1.
Find the area of of a triangle; whose sides
are :
(iii) 21 m, 28 m and 35 m
Answers
Answer:
The area of triangle is 294m²
SidesofΔare
a=21m
b=28m
c=35m
s=
2
a+b+c
=
2
21+28+35
(Simplifying we get)
s=
2
84
=30
AreaofΔ=
S(S−a)(S−b)(S−c)
(formula)
=
42(42−21)(42−28)(42−35)
=
42×21×14×7
=
7×3×3×3×7×2×7×7
7×7×7×7×3×3×2×2
Ans=7×7×3×2=294m
2
★ Given :
- Side of the triangle, a = 21 m
- Side of the triangle, b = 28 m
- Side of the triangle, c = 35 m
★ To find :
- Area of the triangle with the sides 21 m, 28 m and 35 m.
★ Formula required :
Area of a Scalene triangle :
⠀⠀⠀⠀⠀⠀⠀⠀⠀A = √[s(s - a)(s - b)(s - c)]
Where :
A = Area of the triangle
a, b and c = Sides of the triangle
s = Semi-perimeter of the triangle
Here,
Semi perimeter = s = (a + b + c)/2
★ Solution :
Area of the triangle :
Let's find out the semi-perimeter of the triangle :
Semi perimeter :
⇒ s = (a + b + c)
⇒ s = (21 + 28 + 35)/2
⇒ s = 84/2
⇒ s = 42
∴ s = 42 m
The semi-perimeter of the triangle is 42 m.
Now using the formula for area of a triangle and substituting the values in it, we get :
==> A = √[s(s - a)(s - b)(s - c)]
==> A = √[42 × (42 - 21) × (42 - 28) × (42 - 35)]
==> A = √(42 × 21 × 14 × 7)
==> A = √86436
==> A = 294
∴ A = 294 m²