Math, asked by suryaraj12042000, 11 months ago

1. Find the area of the triangle whose vertices are respectively,
(i) (3, 0), (-2, 1) and (-1, - 2)​

Answers

Answered by govindbabu159
0

Step-by-step explanation:

area of triangle =1/2[x1(y3-y2)+x2(y2-y1)+x3(y1-y2)]

Attachments:
Answered by Anonymous
2

Given :

Coordinates of vertices are ;

  • (3,0),(-2,1) and (-1,-2).

To Find :

  • Area of the traingle

Formula used :

Area  \: of \:  triangle =  \frac{1}{2}  \times| x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Solution:

Let us consider,the respective coordinates is of traingle ABC,then

A(3,0) → (x1,y1)

B(-2,1) → (x2,y2)

C(-1,-2) → (x3,y3)

Hence,

Area  \: of  \: triangle =  \frac{1}{2}  \times |3(1 + 2)  - 2( - 2 - 0)  - 1(0 - 1)| \\  \\  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  =  \frac{1}{2}  \times |3(3) - 2( - 2) - 1( - 1)| \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{2}  \times |9 + 4 + 1 |\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{2}  \times| 14 |\\  \\  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  = 7 \: square \: units

Therefore,the area of the traingle is 7 Square units.

Similar questions