1. Find the area of the triangle whose vertices are (5.2) (3,-5) and (-5, -1)
Answers
Given that vertices of triangle are (5, 2), (3, - 5) and (- 5, - 1) respectively.
We know,
Area of a triangle having vertices is evaluated as
Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle, then the area of triangle is given by
So, here
So, on substituting the values, we get
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
1. Distance Formula
Let A(x₁, y₁) and B(x₂, y₂) be two points in the cartesian plane, then distance between A and B is given by
2. Section formula
Let A(x₁, y₁) and B(x₂, y₂) be two points in the cartesian plane and C(x, y) be the point which divides AB internally in the ratio m₁ : m₂, then the coordinates of C is given by
3. Mid-point formula
Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane and C(x, y) be the mid-point of AB, then the coordinates of C is given by
4. Centroid of a triangle
Centroid of a triangle is defined as the point at which the medians of the triangle meet and is represented by the symbol G.
Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle and G(x, y) be the centroid of the triangle, then the coordinates of G is given by
5. Condition for 3 points to be Collinear
Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the coordinates in cartesian plane, then points A, B and C are collinear, then
- Answer in the above attachment.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
@Shivam
#BeBrainly