Math, asked by expertgamer, 24 days ago

1. find the circumference of the circle whose radius is:(take
\pi  = \frac{22}{7}
1. 14cm
2. 21dm
3. 35cm
4. 56dm​

Answers

Answered by vaidehi1419
13

\large\textbf{\underline{\fbox{Given:}}}

 \rm{Radius = \pi( \frac{22}{7}) } \\  \textrm{Circumference = 2} {\pi} \:  \rm{r} \\ { = 2 \times (\frac{22}{7})  \times (\frac{22}{7})} \\  =  \rm{ \frac{22 \times 7}{2 \times 22} } =  \frac{2 \times 7}{2 \times 2}  \\  =  \frac{14}{4}  =  \frac{14}{  \:  \:  \:  \cancel4  \:  \: 1} \\

\large\textbf{\underline{\fbox{Answer:}}}

Hence 4’s table doesn't have 14 in it we’re not gonna cancel it. Therefore the answer is 14cm.

\huge{\fcolorbox{lavender}{lavender}{\purple{\#Be Brainly}}}

Answered by mathdude500
34

\large\underline{\sf{Solution-1}}

Given that, radius of circle, r = 14 cm

We know,

Circumference of a circle of radius r is given by

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{Circumference_{(circle)}\:=\:2\:\pi\:r \: }}}}}} \\ \end{gathered}

So, on substituting the value, we get

\rm \: Circumference_{(circle)} \:  =  \: 2 \times \dfrac{22}{\cancel 7} \times \cancel {14} {} \:  \: ^{2}

\rm\implies \:Circumference_{(circle)} \:  =  \: 88 \: cm \\

\large\underline{\sf{Solution-2}}

Given that, radius of circle, r = 21 dm

We know,

Circumference of a circle of radius r is given by

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{Circumference_{(circle)}\:=\:2\:\pi\:r \: }}}}}} \\ \end{gathered}

So, on substituting the value, we get

\rm \: Circumference_{(circle)} \:  =  \: 2 \times \dfrac{22}{\cancel 7} \times \cancel {21} {} \:  \: ^{3}

\rm\implies \:Circumference_{(circle)} \:  =  \: 132 \: dm \\

\large\underline{\sf{Solution-3}}

Given that, radius of circle, r = 35 cm

We know,

Circumference of a circle of radius r is given by

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{Circumference_{(circle)}\:=\:2\:\pi\:r \: }}}}}} \\ \end{gathered}

So, on substituting the value of r, we get

\rm \: Circumference_{(circle)} \:  =  \: 2 \times \dfrac{22}{\cancel 7} \times \cancel {35} {} \:  \: ^{5}

\rm\implies \:Circumference_{(circle)} \:  =  \: 220 \: cm \\

\large\underline{\sf{Solution-4}}

Given that, radius of circle, r = 56 dm

We know,

Circumference of a circle of radius r is given by

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{Circumference_{(circle)}\:=\:2\:\pi\:r \: }}}}}} \\ \end{gathered}

So, on substituting the value of r, we get

\rm \: Circumference_{(circle)} \:  =  \: 2 \times \dfrac{22}{\cancel 7} \times \cancel {56} {} \:  \: ^{8}

\rm\implies \:Circumference_{(circle)} \:  =  \: 352 \: dm \\

So, Circumference when radius is given are as follow

\begin{gathered}\boxed{\begin{array}{c|c} \bf radius & \bf Circumference_{(circle)} \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 14 \: cm & \sf 88 \: cm \\ \\ \sf 21 \: dm & \sf 132 \: dm \\ \\ \sf 35 \: cm & \sf 220 \: cm\\ \\ \sf 56 \: dm & \sf 352 \: dm \end{array}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions