Math, asked by abhisubhash, 1 month ago

(1),find the degree measure corresponding to 11/14(use π = 22/7). (2),if cosX= -1/2, X lies in the third Quadrant ,Find sinX and Tan X.​

Answers

Answered by ridhya77677
1

Answer:

 {1}^{c}  =  \frac{180°}{\pi}

  { \frac{11}{14} }^{c}  = (  \frac{11}{14} \times  \frac{180}{\pi}  )° \\  =  \frac{11}{14}  \times  \frac{180}{ \frac{22}{7} }  \\  =  \frac{11 \times 180 \times 7}{14 \times 22}  \\  = 45°

_________________________________________

_________________________________________

 \cos(x)  =  -  \frac{1}{2}  \:  \\ \sin(x)  =  \sqrt{1 -cos²(x) }  \\  =  \sqrt{1 -   {(  \frac{ - 1}{2} ) }^{2} }  \\  =  \sqrt{1 -  \frac{1}{4} }  \\  =  \sqrt{ \frac{3}{4} }  \\ since, \: x \: lies \: in \: third \: quadrant \:  where \:  \sin(x )\: is \: negative \: and  \tan(x)  \: is \: positive\:  \ \: so, \\  \sin(x)  =  -  \frac{ \sqrt{3} }{2}  \\ \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }  =  \frac{ -  \frac{ \sqrt{3} }{2} }{ \frac{ - 1}{2} }  =  \sqrt{3}

Similar questions