Math, asked by wwwpuneetsuri, 11 hours ago

1. find the derivative of log,2 ( logx ) w.r.t log x .

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{log\,_2(logx)}

\underline{\textbf{To find:}}

\textsf{Derivative of}

\mathsf{log\,_2(logx)\;with\;respect\;to\;log\,x}

\underline{\textbf{Solution:}}

\underline{\textbf{Formula used:}}

\mathsf{\dfrac{d(log\,_ax)}{dx}=\dfrac{1}{x}\,log_ae}

\mathsf{Let}

\mathsf{f(x)=log\,_2(logx)}

\mathsf{g(x)=logx}

\implies\mathsf{\dfrac{df}{dx}=\dfrac{1}{logx}log_2e\left(\dfrac{1}{x}\right)\;\;\&\;\;\dfrac{dg}{dx}=\dfrac{1}{x}}

\implies\mathsf{\dfrac{df}{dx}=\dfrac{1}{x\,logx}log_2e\;\;\&\;\;\dfrac{dg}{dx}=\dfrac{1}{x}}

\textsf{By chain rule}

\mathsf{\dfrac{df}{dg}=\dfrac{df}{dx}{\times}\dfrac{dx}{dg}}

\implies\mathsf{\dfrac{df}{dg}=\dfrac{\dfrac{df}{dx}}{\dfrac{dg}{dx}}}

\implies\mathsf{\dfrac{df}{dg}=\dfrac{\dfrac{1}{x\,logx}log_2e}{\dfrac{1}{x}}}

\implies\mathsf{\dfrac{df}{dg}=\dfrac{1}{logx}log_2e}

\implies\boxed{\mathsf{\dfrac{df}{dg}=\dfrac{log_2e}{logx}}}

\underline{\textbf{Find more:}}

Similar questions