Math, asked by koolakash6065, 3 months ago

1) Find the difference between simple interst and compoundinterest on Rs. 6250 in 2 years at 4 p.c.p.a.​

Answers

Answered by SachinGupta01
32

\bf \: \underline{Given} :

\sf \implies Principal = Rs. \: 6250

\sf \implies Time = 2 \: years

\sf \implies Rate = 4 \: \%

\bf \: \underline{To \: find} :

\sf \implies Compound \: interest - Simple \: interest = \: ?

\bf \: \underline{\underline{Solution}}

\sf \: First \: of \: all, let's \: find \: the \: value \: of \: (S.I) \: Simple \: interest.

\sf \implies \boxed{ \sf \: \pink{S.I = \dfrac{Principal \times Rate \times Time }{100} }}

\sf \implies\sf \:S.I = \dfrac{6250 \times 4 \times 2 }{100}

\sf \implies\sf \:S.I = \dfrac{625 \times 4 \times 2 }{10}

\sf \implies\sf \:S.I = \dfrac{625 \times 4  }{5}

\sf \implies\sf \:S.I = 125 \times 4

 \red{\sf \implies\sf  \: S.I = Rs.  \: 500}

\sf \: Now, we \: will \: find \: the \: value \: of \: (C.I) \: Compound \: interest.

\sf \: For \: that, we \: have \: \: to \: find \: the \: amount.

\sf \implies \boxed{ \sf \: \pink{Amount = P \bigg( 1 + \dfrac{R }{100} \bigg)^{n} }}

\sf \implies \sf 6250 \bigg( 1 + \dfrac{4 }{100} \bigg)^{2}

\sf \implies \sf 6250 \bigg( 1 + \dfrac{1}{25} \bigg)^{2}

\sf \implies \sf 6250 \bigg(\dfrac{25 + 1}{25} \bigg)^{2}

\sf \implies \sf 6250 \bigg(\dfrac{26}{25} \bigg)^{2}

\sf \implies \sf 6250  \times \dfrac{676}{625}

\sf \implies \sf 10 \times 676

 \red{\sf \implies \sf Amount = Rs.  \: 6760}

\sf \: Now, Compound \: interest = Amount - Principal

\sf \implies \sf Rs. \: 6760 \: - \: Rs. \: 6250

\red{\sf \implies \sf Compound \: interest = Rs. \: 510}

\sf \: Now, difference \: between \: C.I \: and \: S.I \: is :

\sf \implies \sf Compound \: interest \: - \: Simple \: interest

\sf \implies \sf Rs. \: 510 \: - \: Rs. \: 500

\red{\sf \implies \sf Rs. \: 10}

\underline{ \boxed{ \pink{ \sf \: Hence, the \: difference \: between \: C.I \: and \: S.I = Rs. \: 10}}}

Answered by Anonymous
24

Given :

  • Principal (P) = Rs. 6250
  • Rate (R) = 4%
  • Time (T) = 2 years

To Find :

  • Difference between simple interest And compound interest

Solution :

S.I = P × R × T/100

⟿ S.I = 6250 × 4 × 2/100

⟿ S.I = 25000 × 2/100

⟿ S.I = 50000/100

⟿ S.I = Rs. 500

C.I = P (1 + R/100)ⁿ - P

⟿ C.I = 6250 (1 + 4/100)² - 6250

⟿ C.I = 6150 × 104/100× 104/100 - 6250

⟿ C.I = 6250 × 104 × 104/10000 - 6250

⟿ C.I = 6260000/10000 - 6250

⟿ C.I = 6260 - 6250

⟿ C.I = Rs. 510

Difference between S.I And C.I

⟿ C.I - S.I

⟿ 510 - 500

Rs. 10

Difference between S.I And C.I is Rs. 10

Similar questions
Science, 10 months ago