Math, asked by amanffking, 10 months ago

1. Find the HCF of 160, 165 and 305
(a) 4
(b)5
(C) 3
(d) 6​

Answers

Answered by amitkumar44481
8

AnsWer :

B ) 5.

Solution :

Let us,

  • N1 = 160.
  • N2 = 165.
  • N3 = 305.

Prime factorization of N1.

\begin{array}{r | l} 2 & 160 \\ \cline{2-2} 2 & 80 \\ \cline{2-2} 2 & 40 \\ \cline{2-2} 2 & 20 \\ \cline{2-2} 2 & 10 \\ \cline{2-2}  5 & 5 \\ \cline{2-2}     & 1 \end{array}

Prime factorization of N2.

\begin{array}{r | l} 3 & 165 \\ \cline{2-2} 11 & 55 \\ \cline{2-2} 5 & 5 \\ \cline{2-2}    & 1  \end{array}

Prime factorization of N3.

\begin{array}{r | l} 5 & 305 \\ \cline{2-2} 61 & 61 \\ \cline{2-2}     & 1\end{array}

\rule{50}1

Now,

Taking Common No in ( N1 , N2 and N3 )

 \tt\dagger  \:  \:  \:  \:  \: 160\leadsto 2 \times 2 \times 2 \times 2 \times 2 \times 5.

 \tt\dagger  \:  \:  \:  \:  \: 165\leadsto3 \times 5 \times 11.

 \tt\dagger  \:  \:  \:  \:  \: 305\leadsto5 \times 61.

HCF ( N1 , N2 and N3 ) = 5.

Therefore, HCF of given no be 5.

Answered by rd323887
2

Step-by-step explanation:

5 is the answer of your questions

Similar questions