Math, asked by shailsharma200319, 19 days ago

1. Find the maximum and minimum value of f(x) = 2(1 + sin^2x)

2. Find the minimum and maximum value of

|sin2x| - 3​

Answers

Answered by IIGoLDGrAcEII
14

Answer:

Using method of completing the squares:

f(x)=sin2(x)−sin(x)−2

=sin2(x)−2(12)sin(x)+14−14–2

=(sin(x)−12)2−94

Now,

−1≤sin(x)≤1

−1–12≤sin(x)−12≤1–12 (Subtracting 12 throughout)

Taking higher of the two bounds

0≤(sin(x)−12)2≤(−32)2

Therefore,

0–94≤(sin(x)−12)2−94≤94–94

−94≤f(x)≤0

fmax=0

fmin=−9/4

Answered by mathdude500
34

\large\underline{\sf{Solution-1}}

Given function is

\rm \: f(x) = 2(1 +  {sin}^{2}x)

We know,

\rm \:  - 1 \leqslant sinx \leqslant 1

So,

\rm\implies \:0 \leqslant  {sin}^{2}x \leqslant 1

On adding 1 in each term we get

\rm \:  \:0 + 1 \leqslant  {sin}^{2}x + 1 \leqslant 1 + 1

\rm \:  \:1 \leqslant  {sin}^{2}x + 1 \leqslant 2

On multiply by 2, each term, we get

\rm \:  \:2 \leqslant  2({sin}^{2}x + 1) \leqslant 4

\rm\implies \:2 \leqslant f(x) \leqslant 4 \\

So, It implies

Minimum value of f(x) = 2

Maximum value of f(x) = 4

 \green{\large\underline{\sf{Solution-2}}} \\

Given function is

\rm \: f(x) =  |sin2x|  - 3

We know,

\rm \:  - 1 \leqslant sin2x \leqslant 1

So,

\rm\implies \:0 \leqslant  |sin2x| \leqslant 1

On Subtracting 3 from each term, we get

\rm \: 0 - 3 \leqslant  |sin2x|  - 3 \leqslant 1 - 3

\rm \: - 3 \leqslant  |sin2x|  - 3 \leqslant - 2

\rm\implies \: - 3 \leqslant f(x) \leqslant  - 2

So, it implies

Minimum value of f(x) = - 3

Maximum value of f(x) = - 2

Similar questions