Math, asked by affanraipur, 3 months ago

1. find the missing numbers:
1)(-3) + ____ + 7 = -2.
2) 4 + (-7) + ______ = 5.
3) _____ + (-1) + (-9) = -20.
4) ______ + (-5) + (-3) = -4.
5) ______ + (-6) + ( -8) = -4.
guys please answer fast ( those who will answer correctly for all the question i will mark them as brainlist)

Answers

Answered by Durgakumawat04
4

Step-by-step explanation:

1) -6

2) 8

3) -10

4) 4

5) 10

Here is your answer!!

Answered by vinod04jangid
0

Answer:

  1. (-6)
  2. 8
  3. (-10)
  4. 4
  5. 10

Step-by-step explanation:

Given,

  1. (-3) + ____ + 7 = -2.
  2. 4 + (-7) + ______ = 5.
  3. _____ + (-1) + (-9) = -20.
  4. ______ + (-5) + (-3) = -4.
  5. ______ + (-6) + ( -8) = -4.

To Find: The missing numbers in each of the above-mentioned 5 cases.

Explanation:

  • Let us assume that the missing number in each case is "x"
  • Now, our equations become:
  1. (-3) + __x__ + 7 = -2.
  2. 4 + (-7) + ___x___ = 5.
  3. __x__ + (-1) + (-9) = -20.
  4. ___x___ + (-5) + (-3) = -4.
  5. ___x___ + (-6) + ( -8) = -4.
  • Considering case (1),

        [(-3)+x+7]=(-2)\\or, [x+(7-3)]=(-2)\\or, (x+4)=(-2)\\or, x=[(-2)-(+4)]\\or, x=[-2-4]\\or, x=-(2+4)\\or, x=-6

  • Considering Case (2),

        [4+(-7)+x]=5\\or, (4-7+x)=5\\or, x+(4-7)=5\\or, x-3=5\\or, x=5-(-3)\\or, x =5+3\\or, x=8

  • Considering Case (3),

        [x+(-1)+(-9)]=(-20)\\or, [x-1-9]=(-20)\\or, [x-(1+9)]=(-20)\\or, [x-10]=(-20)\\or, x=[(-20)-(-10)]\\or, x=[(-20)+10]\\or, x=[10-20]\\or, x=(-10)

  • Considering Case (4),

        [x+(-5)+(-3)]=(-4)\\or, [x-5-3]=(-4)\\or, [x-(5+3)]=(-4)\\or, [x-8]=(-4)\\or, x=[(-4)-(-8)]\\or, x=[(-4)+8]\\or, x=[8-4]\\or, x=4

  • Considering Case (5),

        [x+(-6)+(-8)]=(-4)\\or, [x-6-8]=(-4)\\or, [x-(6+8)]=(-4)\\or, [x-14]=(-4)\\or, x=[(-4)-(-14)]\\or, x=[(-4)+14]\\or, x=[14-4]\\or, x=10

16,8.5,9,?,74.5,596.5, then find the missing numbers.

https://brainly.in/question/8528236

Find the missing numbers in the following series: 11, 16, 13, 25, 17, 36, 19, ?, ?

https://brainly.in/question/20703424

#SPJ2

Similar questions