1.Find the ratio in which the line-segmentjoiningthepoints(-2,-2)and(3,7)isdividedinternally
bythey-axisl
Answers
Answered by
0
Answer:
2:3
Step-by-step explanation:
Using the section formula, if a
point (x,y) divides the line joining the points (x
1
,y
1
) and (x
2
,y
2
) in the ratio m:n, then (x,y)=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
Substituting (x
1
,y
1
)=(−2,−3) and (x
2
,y
2
)=(3,7) in the section formula, we get the point (
m+n
m(3)+n(−2)
,
m+n
m(7)+n(−3)
)=(
m+n
3m−2n
,
m+n
7m−3n
)
As the
point lies on y - axis, x -coordinate =0.
=>
m+n
3m−2n
=0
=>3m=2n or m:n=2:3
Similar questions