Math, asked by vs7369830, 6 months ago

1.
Find the remainder when
 {x}^{3}  +  {3x}^{2}  +  {3x}^{1}  + 1
is divided by
5 + 2x

Answers

Answered by Anonymous
3

Given:

  • Dividend = + 3x² +3x + 1
  • Divisor = 5 + 2x

Find:

  • What is the remainder when x³ + 3x² +3x + 1 is divided by 5 + 2x

Solution:

Here, we apply remainder theorem to obtain the remainder.

Let, 5 + 2x = 0

 \sf  \to 2x =  - 5

 \underline{ \boxed{ \sf  \color{red}  \to x =   \frac{ - 5}{2} }}

So, put value of x in Dividend of x³ + 3x² +3x + 1

 \sf  \longrightarrow x³ + 3x² +3x + 1

 \sf  \longrightarrow  {  \bigg( \dfrac{ - 5}{2} \bigg)}^{3}  + 3 { \bigg( \dfrac{ - 5}{2} \bigg)}^{2}  +3 \bigg( \dfrac{ - 5}{2} \bigg)+ 1

 \sf  \longrightarrow   - 15.625 + 3 (6.25)  +3 \bigg( \dfrac{ - 5}{2} \bigg)+ 1

 \sf  \longrightarrow   - 15.625 + 18.75   - 7.5+ 1

 \sf  \longrightarrow   3.125  - 6.5

 \underline{  \boxed{ \color{blue}\sf   \longrightarrow    - 3.375}}

Hence, the remainder will be -3.375

Answered by Anonymous
2

Given:

Dividend = x³ + 3x² +3x + 1

Divisor = 5 + 2x

Find:

What is the remainder when x³ + 3x² +3x + 1 is divided by 5 + 2x

Solution:

Here, we apply remainder theorem to obtain the remainder.

Let, 5 + 2x = 0

 \sf  \to 2x =  - 5

 \underline{ \boxed{ \sf  \color{red}  \to x =   \frac{ - 5}{2} }}

So, put value of x in Dividend of x³ + 3x² +3x + 1

 \sf  \longrightarrow x³ + 3x² +3x + 1

 \sf  \longrightarrow  {  \bigg( \dfrac{ - 5}{2} \bigg)}^{3}  + 3 { \bigg( \dfrac{ - 5}{2} \bigg)}^{2}  +3 \bigg( \dfrac{ - 5}{2} \bigg)+ 1

 \sf  \longrightarrow   - 15.625 + 3 (6.25)  +3 \bigg( \dfrac{ - 5}{2} \bigg)+ 1

 \sf  \longrightarrow   - 15.625 + 18.75   - 7.5+ 1

 \sf  \longrightarrow   3.125  - 6.5

 \underline{  \boxed{ \color{blue}\sf   \longrightarrow    - 3.375}}

Hence, the remainder will be -3.375

hope it helps you ☺☺❤

Similar questions