Physics, asked by nikitasanadi, 1 month ago

1) find the resultant force at o​

Attachments:

Answers

Answered by Anonymous
34

Answer:

\setlength{\unitlength}{1.0cm}}\begin{picture}(12,4)\linethickness{0.5mm}\put(1,1){\line(1,0){6.8}}\end{picture}

• Side of square (a) = 3 cm = (3/100) = 0.03 m

• Half of the diagonal = (a/√2) = (0.03/√2)

• Magnitude of charge :

  • q₁ = + 6 nC = 6 × 10⁻⁹ C
  • q₂ = +8 nC = 8 × 10⁻⁹ C
  • q₃ = -4 nC = 4 × 10⁻⁹ C
  • q₄ = +3 nC = 3 × 10⁻⁹ C

\setlength{\unitlength}{1.0cm}}\begin{picture}(12,4)\linethickness{0.5mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Electric field along diagonal BD :

•Due to charge q₂ it's electric field is directed towards point D i.e away from the centre.

• Due to charge q₄ it's electric field is directed towards point B i.e away from the centre. Therefore, electric field along diagonal BD is :

\footnotesize{\longrightarrow\:  \sf E_{(BD)}=E_{2} -E_{1} }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{KQ}{ {a}^{2} }  -  \dfrac{KQ}{ {a}^{2} }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{9 \times  {10}^{9}  \times8 \times  {10}^{ - 9}  }{\bigg(  \frac{0.03}{\sqrt{2} } \bigg)^{2} }  -  \dfrac{9 \times  {10}^{9}  \times3 \times  {10}^{ - 9}  }{ \bigg( \frac{0.03}{\sqrt{2} } \bigg)^{2} }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{72}{\frac{0.0009}{2 }  }  -  \dfrac{ 27 }{  \frac{0.0009}{2 }  }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{72 \times 2}{0.0009 }  -  \dfrac{ 27  \times 2}{  0.0009  }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{144}{0.0009 }  -  \dfrac{54 }{  0.0009  }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{144 - 54}{0.0009 }    }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{90}{0.0009 }    }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{90 \times 10000}{0.0009 \times 10000 }    }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= \dfrac{900000}{9 }    }  \\

\footnotesize{\longrightarrow\:  \sf E_{(BD)}= 100000 \: N/C}  \\

\setlength{\unitlength}{1.0cm}}\begin{picture}(12,4)\linethickness{0.5mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Electric field along AC :

• Due to charge q₁ it's electric field will be directed away from the centre i.e directed towards point C.

• Due to charge q₃ it's electric field will be towards centre and directed towards point C.

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=E_{2}  + E_{1} }  \\

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=\dfrac{KQ}{ {a}^{2} } + \dfrac{KQ}{ {a}^{2} } }  \\

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=\dfrac{9 \times  {10}^{9}  \times6 \times  {10}^ { - 9}  }{ \bigg(  \frac{0.03}{\sqrt{2} } \bigg)^{2}  } + \dfrac{9 \times  {10}^{9}  \times 4 \times  {10}^{ - 9} }{   \bigg(  \frac{0.03}{\sqrt{2} } \bigg)^{2}} }  \\

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=\dfrac{108 }{ 0.0009  } + \dfrac{72 }{ 0.0009} }  \\

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=\dfrac{108 + 72 }{ 0.0009  }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=\dfrac{180 }{ 0.0009  }  }  \\

\footnotesize{\longrightarrow\:  \sf E_{(AC)}=200000 \: N/C}  \\

\setlength{\unitlength}{1.0cm}}\begin{picture}(12,4)\linethickness{0.5mm}\put(1,1){\line(1,0){6.8}}\end{picture}

At the centre the two electric fields are perpendicular to each other, so net electric field can be calculated using superposition principle:

\footnotesize{\longrightarrow\:  \sf E_{(net)}=\sqrt{(E_{AC})^2+ (E_{BD})^2}}  \\

\footnotesize{\longrightarrow\:  \sf E_{(net)}=\sqrt{(200000)^2+ (100000)^2}}  \\

\footnotesize{\longrightarrow\:  \sf E_{(net)}=\sqrt{ 4 \times 10^{10}+ 1\times 10^{10} }}  \\

\footnotesize{\longrightarrow\:  \sf E_{(net)}=10^5\sqrt{4 + 1}}  \\

\footnotesize{\longrightarrow\:   \underline{ \underline{\sf E_{(net)}=\sqrt{5} \times10^5 \:N/C }}}  \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{0.5mm}\put(1,1){\line(1,0){6.8}}\end{picture}


snehitha2: Awesome :aww-blob:
Anonymous: Thank you :meow_blush:
Similar questions