Math, asked by swamyvivekananda, 9 months ago

1. Find the solution using distributivity.

{ 7/5 x (-3/10) } + { 7/6 x 9/10 }

2. Simplify 2/5 + 3/7 + (-6/5) + (13/7).

3. Write the additive inverse of the following. (i) 5/8 (ii) -9/7.

4. Find 2/5 x (-1/9) + 23/180 – 1/9 x 3/4.

5. Find the product of 2/5 and reciprocal of 25/4.​

Answers

Answered by mysticd
3

/* First question must be like this */

 \red{ 1. \frac{7}{5} \times \Big(\frac{-3}{10}\Big) + \frac{7}{5} \times \frac{9}{10}} \\= \frac{7}{5} \Big ( \frac{-3}{10} + \frac{9}{10} \Big) \\= \frac{7}{5} \Big ( \frac{-3+9}{10}  \Big)

/* ________________

By Distributive Property :

 \pink { A\times B + A \times C = A( B+C) }

____________________*/

 =  \frac{7}{5} \times \frac{6}{10}

 =  \frac{7}{5} \times \frac{3}{5}

 =  \frac{21}{25}

Therefore.,

 \red{ \frac{7}{5} \times \Big(\frac{-3}{10}\Big) + \frac{7}{5} \times \frac{9}{10}}\green {= \frac{21}{25}}

 \red{ 2. \frac{2}{5} + \frac{3}{7 }+ \big(\frac{-6}{5}\big) + \frac{13}{7} }

/* Rearranging the terms, we get */

 = \frac{2}{5} - \frac{6}{5 }+ \frac{3}{7} + \frac{13}{7}

 = \frac{2-6}{5} + \frac{3+13}{7}

 = \frac{-4}{5} + \frac{16}{7}

 = \frac{ -28+80}{35} \\ = \frac{ 52}{35}

Therefore.,

 \red{  \frac{2}{5} + \frac{3}{7 }+ \big(\frac{-6}{5}\big) + \frac{13}{7} }\green { = \frac{ 52}{35}}

 \red{ 3.i) Additive \: inverse \: of \: \frac{5}{8 } } \\is \:\underline { \blue { \frac{-5}{8}}}

 \red{ 3. ii)Additive \: inverse \: of \: \frac{-9}{7 } } \\is \:\underline { \blue { \frac{9}{7}}}

 \red{4.\frac{2}{5} \times \Big(\frac{-1}{9}\Big) + \frac{23}{180} - \frac{1}{9} \times \frac{3}{4}}

/* Rearranging the terms,we get */

 = \frac{2}{5} \times \big(\frac{-1}{9}\big) + \frac{- 1}{9}\times \frac{3}{4}+ \frac{23}{180}

 = \frac{-1}{9} \Big ( \frac{2}{5} + \frac{3}{4} \Big) + \frac{23}{180}

 = \frac{-1}{9} \times \frac{8+15}{20} + \frac{23}{180}

 = \frac{-1}{9} \times \frac{23}{20} + \frac{23}{180}

 = (-1)\times \frac{23}{9\times 20} + \frac{23}{180}

 = \frac{-23}{180} + \frac{23}{180}

 = 0

Therefore.,

\red{\frac{2}{5} \times \Big(\frac{-1}{9}\Big) + \frac{23}{180} - \frac{1}{9} \times  \frac{3}{4}}\green {=0}

 \red{ 5 . The\: product\: of \:\frac{2}{5}\: and}\\\red{ reciprocal \:of \: \frac{25}{4} }\\= \frac{2}{5} \times \blue { \frac{4}{25}} \\= \frac{2 \times 4 }{5 \times 25 } \\= \frac{8}{125}

Therefore.,

 \red{  The\: product\: of \:\frac{2}{5}\: and}\\\red{ reciprocal \:of \: \frac{25}{4} } \\\green {= \frac{8}{125}}

•••♪

Similar questions