1.
Find the sum and product of the eigenvalues of the matrix {1 1 1}{1 2 2 } { 1 2 3}
Answers
Answer:
Step-by-step explanation:
sum of given matrix
- (1+1+1 1+2+2 1+2+3)
- (3 5 6)
product
- (1*1*1 1*2*2 1*2*3)
- (1 4 6)
eigenvalues
hope you have a good day.thank you
Answer:
This proof requires the investigation of the characteristic polynomial of AA, which is found by taking the determinant of (A - \lambda{I}_{n})(A−λI
n
).
A = \begin{bmatrix} {a}_{11} & \cdots &{a}_{1n} \\ \vdots &\ddots &\vdots \\ {a}_{n1} &\cdots & {a}_{nn}\\ \end{bmatrix}
A=
⎣
⎢
⎡
a
11
⋮
a
n1
⋯
⋱
⋯
a
1n
⋮
a
nn
⎦
⎥
⎤
A - {I}_{n}\lambda = \begin{bmatrix} {a}_{11} - \lambda & \cdots &{a}_{1n} \\ \vdots &\ddots &\vdots \\ {a}_{n1} &\cdots & {a}_{nn} - \lambda\\ \end{bmatrix}
A−I
n
λ=
⎣
⎢
⎡
a
11
−λ
⋮
a
n1
⋯
⋱
⋯
a
1n
⋮
a
nn
−λ
⎦
⎥
⎤
Observe that det(A - \lambda{I}_{n} ) = det(A) + ... + tr(A){(-\lambda)}^{n-1} + {(-\lambda)}^{n}det(A−λI
n
)=det(A)+...+tr(A)(−λ)
n−1
+(−λ)
n
.
Let {r}_{1}, {r}_{2}, ...,{r}_{n}r
1
,r
2
,...,r
n
be the roots of an n-order polynomial.
P(\lambda) = ({r}_{1} - \lambda)({r}_{2} - \lambda)...({r}_{n} - \lambda)
P(λ)=(r
1
−λ)(r
2
−λ)...(r
n
−λ)
P(\lambda) = \prod _{ i=i }^{ n }{ { r }_{ i } } +...+\sum _{ i=i }^{ n }{ { r }_{ i }{(-\lambda)}^{n-1} + {(-\lambda)}^{n} }
P(λ)=
i=i
∏
n
r
i
+...+
i=i
∑
n
r
i
(−λ)
n−1
+(−λ)
n
Since the eigenvalues are the roots of a matrix polynomial, we can match P(x)P(x) to det(A - \lambda{I}_{n})det(A−λI
n
). Therefore it is clear that
\prod _{ i=i }^{ n }{ { \lambda }_{ i } = det(A)}
i=i
∏
n
λ
i
=det(A)
and
\sum _{ i=i }^{ n }{ { \lambda }_{ i } = tr(A)}.
i=i
∑
n
λ
i
=tr(A).