Math, asked by deepanshu10033, 8 months ago

1. Find the sum of the following APs:
(1) 2, 7, 12,..., to 10 terms.
(ii) 0.6, 1.7, 2.8,..., to 100 terms.​

Answers

Answered by amansharma264
6

Answer:

\mathfrak{\large{ \green{\underline{\underline{Answer}}}}} \\  \large \green{1) = 245} \\  \large \green{2) = 5505}

Step-by-step explanation:

 \large \green{ \underline{ \underline{to \: find \: the \: sum \: of \: following \: ap}}} \\  \large \green{1) = 2 + 7 + 12 + ......to \: 10 \: terms} \\  \large \green{ \underline{ \underline{formula \: of \: sum \: of \: n \: terms = }}} \\  \large \blue{sn =  \frac{n}{2}(2a + (n - 1)d) } \\  \large \blue{ \underline {first \: term = 2}} \\  \large \blue{ \underline{common \: difference = 5}} \\  \large \green{ \underline{ \underline{sum \: of \: 10 \: terms \: of \: ap}}} \\  \large \green{s10 =  \frac{10}{2}(2(2) + (10 - 1)5) } \\  \large \green{5(49) = 245} \\   \\  \large \green{2) = 0.6 +  1.7 + 2.8...... \: to \: 100 \: terms} \\  \large \green{s100 =  \frac{100}{2}(2(0.6) + (100 - 1)1.1) } \\  \large \green{50(1.2 + 108.9)} \\  \large \green{50(110.1)} \\  \large \green{5505 = answer}

Similar questions