Math, asked by NeedVerifiedAnswer, 15 hours ago

1. Find the valu of x
 \large\sf {8}^{2x + 2} = {16}^{3x - 1}
2. Evaluate :-
 \large\sf\frac{36^{ \frac{5}{2}} - 36^{ \frac{7}{2} } }{36^{ \frac{3}{2} } }  \\
Don't Spam .... Dis ques 4 Mod, brainlyStar and other best users​​

Answers

Answered by intelligent372
6

See the solution.

Hope it helps!!

Attachments:
Answered by Anonymous
27

1. As per the information provided in the question, We have :

  • 8^(2x + 2) = 16^(3x - 1)

We are asked to find the value of x, In order to find the value of x we will simplify it using laws of exponents.

 \begin{gathered} \longmapsto \rm 8^{(2x + 2) }= 16^{(3x - 1)} \end{gathered}

Let's make the bases equal, So that powers can be equated,

\begin{gathered} \longmapsto \rm  {2}^{{3}{(2x + 2) }}=  {2}^{{4} {(3x - 1})} \end{gathered}

\begin{gathered} \longmapsto \rm  {{3}{(2x + 2) }}=  {{4} {(3x - 1})} \end{gathered}

\begin{gathered} \longmapsto \rm  6x + 6=  12x - 4 \end{gathered}

\begin{gathered} \longmapsto \rm  6x - 12x=  - 4 - 6 \end{gathered}

\begin{gathered} \longmapsto \rm   - 6x=   - 10 \end{gathered}

\begin{gathered} \longmapsto \rm   x=    \cancel{ \dfrac{ - 10}{ - 6}} \end{gathered}

\begin{gathered} \longmapsto \rm   x=     \dfrac{ 5}{ 3} \end{gathered}

∴ The value of x is 5/3.

\rule{200}2

2. As per the information provided in the question, We have :

  •  \large\sf\dfrac{36^{ \frac{5}{2}} - 36^{ \frac{7}{2} } }{36^{ \frac{3}{2} } } \\

We are asked to evaluate. In order to do it, We will use laws of exponents.

\longmapsto \sf\dfrac{7776- 279936 }{ {2}^{3} \times  {3}^{3}   } \\

\longmapsto \sf\dfrac{ - 272160}{ {2}^{3} \times  {3}^{3}   } \\

\longmapsto \sf - \dfrac{ {2}^{5}  \times  {3}^{5}   \times 5 \times 7 }{ {2}^{3} \times  {3}^{3}   } \\

\longmapsto \sf - \dfrac{  \cancel{{2}^{5}}  \times   \cancel{{3}^{5} } \times 5 \times 7}{  \cancel{{2}^{3} }\times   \cancel{{3}^{3}  } } \\

\longmapsto \sf - {{2}^{2}  \times  {3}^{2}   \times 5 \times 7} \\

\longmapsto \sf -{ 4 \times 9  \times 35} \\

\longmapsto \sf -{1260} \\

\rule{200}2

Similar questions