Math, asked by vidyavarma93696, 5 months ago

1. Find the value of 'k' such that the quadratic polynomial x2 - (k+6)x+ 2 (2k +1)
has sum of the zeros is half of their product.

Answers

Answered by snehitha2
6

Answer:

k = 5

Step-by-step explanation:

Quadratic Polynomials :

✯ It is a polynomial of degree 2

✯ General form :

      ax² + bx + c  = 0

✯ Determinant, D = b² - 4ac

✯ Based on the value of Determinant, we can define the nature of roots.

    D > 0 ; real and unequal roots

    D = 0 ; real and equal roots

    D < 0 ; no real roots i.e., imaginary

✯ Relationship between zeroes and coefficients :

     ✩ Sum of zeroes = -b/a

     ✩ Product of zeroes = c/a

________________________________

Given quadratic polynomial,

x² - (k + 6)x + 2(2k + 1)

It is of the form ax² + bx + c

a = 1 , b = -(k + 6) , c = 2(2k + 1)

we know,

⇒ Sum of zeroes = -b/a

⇒ Product of zeroes = c/a

According to the question,

Sum of the zeroes = 1/2 (product of the zeroes)

          \frac{-b}{a} =\frac{1}{2} \times \frac{c}{a} \\\\ -b=\frac{c}{2} \\\\ -[-(k+6)]=\frac{2(2k+1)}{2} \\\\ k+6=2k+1 \\\\ 2k-k=6-1 \\\\ k=5

The value of k is 5.

Verification :

⇒ Sum of zeroes = -b/a

                             = -[-(k + 6)]/1

                             = k + 6

                             = 5 + 6

                             = 11

⇒ Product of zeroes = c/a

                                  = 2(2k + 1)/1

                                  = 4k + 2

                                  = 4(5) + 2

                                  = 20 + 2

                                  = 22

Sum of zeroes = half of the product of zeroes

          11         =       1/2 × (22)

          11         =        22/2

          11         =        11

Hence verified!

Answered by guptavishrut
2

Answer:

Step-by-step explanation:

Let α and β are the roots of given quadratic equation x² - ( k +6)x + 2(2k +1) = 0 [ you did a mistake in typing  the equation, I just correct it ]

Now, sum of roots = α + β = - {-( k + 6)}/1 = (k + 6)

product of roots = αβ = 2(2k + 1)/1= 2(2k + 1)

A/C to question,

The sum of roots ( zeros ) = 1/2 × products of roots zeros

⇒ (k + 6) = 1/2 × 2(2k + 1)

⇒ (k + 6) = (2k + 1)

⇒ k + 6 = 2k + 1

⇒ k = 5

Hence, k = 5

PLS MARK ME AS BRAINLIEST IF YOU LIKED THE EXPLANATION OF THE ANSWER AND IF THE ANSWER IS CORRECT

Similar questions