Math, asked by dhruvishah348, 2 months ago


(1)
Find the value of "n" or "r":
np3: (n+1)P3=3:4​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{^{n}P_3 : \: ^{n + 1}P_3 = 3 : 4}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{n }\end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

We know that,

\boxed{\sf \:^{n}P_r=\dfrac{n!}{(n-r)!}}  \:

Given that

 \rm :\longmapsto\:^{n}P_3 :^{n + 1}P_3 = 3 : 4

\rm :\longmapsto\:\dfrac{n!}{(n - 3)!} : \dfrac{(n + 1)!}{(n + 1 - 3)!}  = 3 :4

\rm :\longmapsto\:\dfrac{n!}{(n - 3)!} : \dfrac{(n + 1)!}{(n - 2)!}  = 3 :4

\rm :\longmapsto\:\dfrac{n!}{(n - 3)!} : \dfrac{(n + 1)n!}{(n - 2)(n - 3)!}  = 3 :4

\rm :\implies\:\dfrac{n - 2}{n + 1}  = \dfrac{3}{4}

\rm :\longmapsto\:4n - 8 = 3n + 3

\bf\implies \:n \:  =  \: 11

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

Each of the different arrangement which can be made by taking some or all of a number of things is called a permutation. 

 \boxed{ \sf \: ^{n}P_0 = 1}

 \boxed{ \sf \: ^{n}P_n = n!}

 \boxed{ \sf \: ^{n}P_r = n\bigg(  \: ^{n - 1}P_{r - 1}\bigg)}

Similar questions