Math, asked by adithyash835, 3 months ago



1. Find the value of sin 60° cos 30° + sin 30° cos 60°​

Answers

Answered by sujatachannawar30
0

Answer:

The values are:-

√3/2×√3/2 + 1/2 × 1/2

Step-by-step explanation:

Further division,

=3/4+1/4

=(12+4)+ 4/16

=20/16

=5/4

I hope this will help you

All the Best...

Answered by Itzreena
4

\huge\mathfrak{\fcolorbox{lime}{crimson}{卂иรωεƦ↓}}

\huge\bold\pink{Given:}

⇒\:sin 60° \:cos 30°\: + \:sin 30° \:cos 60°

\huge\mathcal\orange{FInD:}

⇒value of the given equation .

\mathcal\green{★\:formulae\:★}

⇒sin θ = cos ( 90° – θ )

⇒cos θ = sin ( 90° – θ )

\huge\mathfrak\color{yellow}{\underline{\underline{Explanation:}}}

__________________________________

⇒\:sin θ \:= \:cos ( 90°\: – \: θ )

 ⇒\:sin 60° \:= \:cos\: ( 90°\: –\: 60° )

 ⇒\:sin 60° \:= \:cos 30° ––– (i)

__________________________________

⇒\:cos θ \:= \:sin\: ( 90° \:–  \;θ )

⇒\:cos 60° \: = \: ( 90°\: –\: 60° )

 ⇒\:cos 60° \:= \:sin 30° –––(ii)

__________________________________

now we have from –––(i) and (ii)

⇒\:cos 30° \: cos 30° \:+\: sin 30°\:sin 30°

__________________________________

As we know that .

 \\

⇒\:cos 30°\: = \: \frac{1}{2} \\

⇒\:sin 30° \:= \: \frac{\sqrt{3}}{2} \\

 \\

substituting this value In equation .

__________________________________

__________________________________

⇒\:cos 30° \: cos 30° \:+\: sin 30°\:sin 30°

⇒\:\frac{1}{2} × \frac{1}{2} + \frac{\sqrt{3}}{2} × \frac{\sqrt{3}}{2} \\

⇒\:\frac{1\:×\:1}{2\:×\:2} \:+\frac{\sqrt{3}\:×\:\sqrt{3}}{2\:×\:2} \\

⇒\:\frac{1}{4} \:+\:\frac{3}{4} \\

⇒\:\frac{1\:+\:3}{4} \\

⇒\:\frac{4}{4} \\

⇒\:1

\large\blue{\:value\:of}

⇒\:cos 30° \: cos 30° \:+\:sin 30°\:sin 30°\:=\:1

\huge\mathcal\color{red}I\:hope\:it\:helps\:you.

Similar questions