1) Find the value of y if distance between points AC 2,-2) & B (-1, y) is 5.
Answers
Answered by
1
Answer:
The distance formula is d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
Here, distance is d=5
The point is (x_1,y_1)=A(2,-2)(x
1
,y
1
)=A(2,−2) and (x_2,y_2)=B(-1,y)(x
2
,y
2
)=B(−1,y)
Substitute the value,
5=\sqrt{(-1-2)^2+(y-(-2))^2}5=
(−1−2)
2
+(y−(−2))
2
5=\sqrt{(-3)^2+(y+2)^2}5=
(−3)
2
+(y+2)
2
Squaring both side,
25=9+y^2+4+4y25=9+y
2
+4+4y
y^2+4y-12=0y
2
+4y−12=0
y^2+6y-2y-12=0y
2
+6y−2y−12=0
y(y+6)-2(y+6)=0y(y+6)−2(y+6)=0
(y+6)(y-2)=0(y+6)(y−2)=0
y=-6,2y=−6,2
Therefore, the value of y is -6 and 2.
Similar questions