Math, asked by prathiksacs, 4 days ago

1. Find the values of k which the quadratic equation K²x² - 2 (K-D x+4 -0 has real and equal roots. a) K=0 [or] K=! de k=1 or k=1 c) k=-1 or k=1 d) k=-3 or k=1 ) K = k=K 1/ 3 3 3 3​

Answers

Answered by Shreyas235674
3

Answer: Correct option is A)

k  

2

x  

2

−2(2k−1)x+4=0

⇒  Here, a=k  

2

,b=−2(2k−1),c=4

⇒  It is given that roots are real and equal.

∴  b  

2

−4ac=0

⇒  [2(2k−1)]  

2

−4(k  

2

)(4)=0

⇒  4(4k  

2

−4k+1)−16k  

2

=0

⇒  16k  

2

−16k+4−16k  

2

=0

⇒  −16k=−4

∴  k=  

4

1

 

∴  We can see value of k given in question is correct.

Step-by-step explanation:

Answered by ImpressAgreeable4985
1

k2x2 – 2 (k – 1)x + 4 = 0

Sol. k2x2 – 2 (k – 1)x + 4 = 0

Comparing with ax2 + bx + c = 0 we have a = k2, b = – 2 (k – 1), c = 4

We know that,

∆  = b2 – 4ac

= [– 2 (k – 1)]2 – 4 (k2) (4)

= (– 2k + 2)2 – 16k2

= 4k2 – 8k + 4 – 16k2

= – 12k2 – 8k + 4

∵  The roots of given equation are real and equal.

∴ ∆  must be zero.

∴  – 12k2 – 8k + 4 = 0

∴  – 4 (3k2 + 2k – 1) = 0

∴   3k2 + 3k – k – 1 =  -0/4

∴  3k (k + 1) – 1 (k + 1) = 0

∴  (k + 1) (3k – 1) = 0

∴  k + 1 = 0 or 3k – 1 = 0

∴  k = – 1 or 3k = 1

∴ k = -1 or k = 1/3

Similar questions