Math, asked by xxxrosexxx, 3 months ago

1.find the volume, area of the curved surface and the total surface area of a cylinder whose height and radius of base are 20 cm and 28 CM respectively.

2.the diameter of a roller is 2.1 metre and its length is 1.75 metre if it takes 500 revolutions to level a field find the cost of levelling it at 75 paise per metre ²
Note: Plz don't spam‼️⚠️

Answers

Answered by advik190
2

1)

given:

h = height = 20cm

r = radius = 28cm

to find:

volume , tsa , csa

Sol.

volume of cylinder = \pi r^{2} h

= 22/7 * 28 * 28 * 20 cm^3

= 22 * 4 * 28 * 20 cm^3

= 49280 cm^3

or , 49.28 l

csa of cylinder = 2\pi rh

= 2 * 22/7 * 28 * 20

= 2* 22 * 4 * 20

= 3520cm^2

tsa of cylinder = 2\pi rh + 2\pi r^{2}

= 3520 + 2 * 22/7 * 28 * 28

= 3520 + 2 * 22 * 4 *28

= 3520 + 4928

= 8448cm^2

2)

given:

d = diameter = 2.1 m

h = length  = 1.75 m

revolutions = 500

and cost of  leveling per m^2 is Rs 0.75/-

to find:

total cost of leveling

Sol.

total area covered = csa * total no. of revolutions

= 2\pi rh * 500

= \pi d h *500

= 22/7 * 2.1 * 1.75 * 500

= 22 * 0.3 * 1,75 *500 m^2

now , total cost  = cost of leveling a m^2 * total area

=  22* 0.3 * 1.75 * 500 * 0.75

= Rs 4331.25/-

Answered by mathdude500
4

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \bigstar \:  \: {{ \boxed{{\bold\green{Curved \:  Surface \:  Area_{(Cylinder)}\: = \:2\pi rh)}}}}}

 \bigstar \:  \: {{ \boxed{{\bold\blue{Total \: Surface Area_{(Cylinder)}\: = \:2\pi r(h +r)}}}}}

 \bigstar \:  \: {{ \boxed{{\bold\red{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

CALCULATION :-

\large\underline\blue{\bold{ \sf \: ANSWER \:  -  \: 1}}

Given that

  • Height of Cylinder, h = 20 cm

  • Radius of Cylinder, r = 28 cm

So,

  • Volume of cylinder is given by

 \longmapsto \rm \: {{ {\large{\bold\red{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

 \longmapsto \rm \: Volume_{(Cylinder)}\: = \: \dfrac{22}{7}  \times 28 \times 28 \times 20

 \longmapsto \boxed{ \purple{ \bf \: Volume_{(Cylinder)}\: = \: 49280 \:  {cm}^{3} }}

Now,

  • Total Surface Area of cylinder is given by

\rm :\implies\: \red{TSA_{(cylinder)} = 2\pi \: r(h + r)}

 \longmapsto \rm \: TSA_{(cylinder)} = 2 \times \dfrac{22}{7}  \times 28 \times (28 + 20)

 \longmapsto \rm \: TSA_{(cylinder)} = 44 \times 4 \times 48

 \longmapsto \boxed{ \green{ \bf \: TSA_{(cylinder)} = 8448 \:  {cm}^{2} }}

Now,

  • Curved Surface Area of cylinder is given by

\rm :\implies\: \purple{CSA_{(cylinder)} \:  = 2\pi \: rh}

 \longmapsto \rm \: CSA_{(cylinder)} = 2 \times \dfrac{22}{7}  \times 28 \times 20

 \longmapsto \boxed{ \orange{ \bf \:CSA_{(cylinder)} = 3520 \:  {cm}^{2}  }}

\large\underline\blue{\bold{ \sf \: ANSWER \:  -  \: 2}}

Given that

  • Diameter of cylindrical roller, d = 2.1 m

So,

  • Radius of cylindrical roller, r = 1.05 m

And

  • Height of cylindrical roller, h = 1.75 m

Now,

We know that,

 \bull \:  \: \: \red{ \sf \: Area  \: covered \:  in  \: 1 \:  revolution \:  = CSA_{(cylinder)}}

\rm :\implies\:Area  \: covered \:  in \:  500 \:  revolution  = 500 \times 2\pi \: r h

\rm :\implies\:Area_{(covered)} \:  =  \: 500 \times 2 \times \dfrac{22}{7}  \times 1.05 \times 1.75

\rm :\implies\:Area_{(covered)} \:  = 5775 \:  {m}^{2}

Now,

Cost of levelling the field is Rs 0.75 per square metre.

So,

Total Cost of levelling the field is

 \longmapsto \rm \: Cost_{(levelling)} \:  = 5775 \times 0.75

 \longmapsto \boxed{ \green{ \bf \:   Cost_{(levelling)} \: = Rs \: 4331.25}}

Similar questions