Math, asked by karunagurjar8, 1 month ago

1. Find the zeroes of the quadratic polynomial
6x-13x + 6 and verify the relation between
the zeroes and its coefficients.​

Answers

Answered by Itzheartcracer
4

Given :-

6x² - 13x + 6

To Find :-

Zeroes

Solution :-

\sf :\implies 0 = 6x^2-13x+6

\star\sf\underline{Spilt\;the\;middle\;term}

\sf :\implies 0 = 6x^2-(9x+4x) + 6

\sf :\implies 0 = 6x^2 -9x-4x+6

\sf :\implies 0 = 3x(2x - 3)-2(2x - 3)

\sf :\implies 0= (2x-3)(3x-2)

\sf :\implies x = \dfrac{3}{2}\;\&\; \dfrac{2}{3}

On comparing the given equation with ax² + bx + c. We get

a = 6

b = -13

c = 6

\bf \alpha +\beta =\dfrac{-b}{a}

\sf :\implies\dfrac{3}{2}+\dfrac{2}{3}=\dfrac{-(-13)}{6}

\sf :\implies\dfrac{9 + 4}{6}=\dfrac{13}{6}

\sf :\implies \dfrac{13}{6}=\dfrac{13}{6}

\bf \alpha \beta =\dfrac{c}{a}

\sf :\implies\dfrac{3}{2}\times\dfrac{2}{3}=\dfrac{6}{6}

\sf :\implies\dfrac{6}{6}=\dfrac{6}{6}

\sf :\implies 1=1

Hence, Verified

Answered by ⱮøøɳƇⲅυѕɦεⲅ
10

{\boxed{ \LARGE{ \purple{ \rm{ \underline{ Given}}}}}}

\bf \Large \hookrightarrow \:  \: 6 {x}^{2}   \: -  \: 13x \:  + \:  6

_________________________

{\boxed{ \LARGE{ \purple{ \rm{ \underline{ To  \:  \: Find}}}}}}

Zeroes of the quadratic polynomial and relation between the zeroes and its coefficients.

_______________________________

{\boxed{ \LARGE{ \purple{ \rm{ \underline{ Solution}}}}}}

\bf \Large \hookrightarrow \:  \:  \: 6 {x}^{2}   \: -  \: 13x \:  + \:  6

\bf \Large \hookrightarrow \:  \:6 {x}^{2}  \:  - 4x \:  -  \: 9x \:  +  \: 6

 \bf \Large \hookrightarrow \:  \:2x \: (3x - 2) \:   \: - 3 \: (3x - 2)

 \bf \Large \hookrightarrow \:  \:(2x - 3) \:  \:  \: (3x  - 2)

\bf \Large \hookrightarrow \: 2x - 3 = 0 \\  \\\bf \Large \hookrightarrow \:  \:x =  \:  \frac{3}{2}

 \bf \Large \hookrightarrow \:  \:3x - 2 = 0 \\  \\ \bf \Large \hookrightarrow \:  \: \: x \:  =  \:  \frac{2}{3}

\bf \Large \hookrightarrow \:  \: \: x \:  =  \:  \frac{3}{2}  \:  \: and \:  \frac{2}{3}  \\

Zeroes of the quadratic polynomial 6x² - 13x + 6 is 3/2 and 2/3.

 \:

\begin{gathered} {\underline{\boxed{ \bf {\red{ \alpha  \:  =  \:  \frac{3}{2} }}}}}\end{gathered} \\  \\ \begin{gathered} {\underline{\boxed{ \bf {\red{  \beta   \:  =  \:  \frac{2}{3} }}}}}\end{gathered}

_______________________

Now , we compare 6x² - 13x + 6 to general equation.

 \:

General Equation is ax² + bx + c.

 \huge\begin{gathered} {\underline{\boxed{ \sf {\blue{So ,}}}}}\end{gathered}

a = 6

b = -13

c = 6

________________________

Now , we have to Verify the relationship between Zeros and coefficient.

\Large  \mid   \underline {\rm {{{\color{navy}{First \:  \:  Relation...}}}}} \mid

\rm \Large \rightarrow \:  \:Sum  \:  \: of   \: \: Zeros

\bf \Large \implies \:  \:( \alpha  +  \beta )  \: =  \:  \frac{ - b}{a}  \\

\bf \Large \implies \:  \: \bigg( \:  \frac{3}{2}  \:  +  \:  \frac{2}{3}  \: \bigg) \:  =   \frac{ - 13}{6}  \\

\bf \Large \implies \:  \: \frac{9  \: +  \: 4}{6}  \:  =  \:   \frac{ - ( - 13)}{6}  \\

\bf \Large \implies \:  \: \frac{13}{6}  \:  =  \:  \frac{13}{6}  \\

 \large\begin{gathered} {\underline{\boxed{ \rm {\pink{First  \:  \: Relation  \:  \: is  \:  \: proved}}}}}\end{gathered}

________________________

\Large  \mid   \underline {\rm {{{\color{navy}{Second \:  \:  Relation...}}}}} \mid

\rm \Large \rightarrow \:  \:Product  \:  \: of   \: \: Zeros

\bf \Large \implies \:  \:( \alpha  \times  \beta ) \:  =  \:  \frac{c}{a}   \\

\bf \Large \implies \:  \: \frac{3}{2}  \:  \times  \:  \frac{2}{3}  \:  =  \:  \frac{6}{ 6}  \\

\bf \Large \implies \:  \: \frac{2 \:  \times  \: 3}{6}  \:  =  \frac{6}{6}  \\

\bf \Large \implies \:  \: \:  \frac{6}{6}  \:  =  \:  \frac{6}{6}  \\

\bf \Large \implies \:  \: \:   \cancel\frac {6}  {6}  \:  =  \:   \cancel\frac{6}  {6}  \\

\bf \Large \implies \:  \: 1 \:  =  \: 1

\large\begin{gathered} {\underline{\boxed{ \rm {\pink{Second  \:  \: Relation  \:  \: is  \:  \: proved}}}}}\end{gathered}

Similar questions