1. From the following figure, find (sec xº + tan xº)
Answers
Answered by
1
Answer:
Mark me as brainliest
Step-by-step explanation:
Let the given triangle be ABC, where ∠ABC=90
∘
, AB=1,BC=y,AC=2
By Pythagoras Theorem,
AC
2
=AB
2
+BC
2
2
2
=1
2
+y
2
y
2
=3
y=
3
Now, (secx
0
−tanx
0
)(secx
0
+tanx
0
)
= sec
2
x
∘
−tan
2
x
∘
= (
B
H
)
2
−(
B
P
)
2
=
1
2
−
1
3
= 4−3
= 1
Answered by
1
Answer
Open in answr app
Given that,
(i) y=?
(ii) sinx2=?
(iii) (secxo−tanxo)(secxo+tanxo)=?
According to given figure,
By Pythagoras theorem,
(Hypotenuse)2=(perpendicular)2+(Base)2
22=12+y2
4−1=y2
(i) y=3
(ii) sinxo=Hypotenuseperpendicular
sinxo=2y
sinxo=23
(iii) (secxo−tanxo)(secxo+tanxo)
⇒sec2xo−tan2xo
∴(A−
pls mark me as a brainliest....
Similar questions