1. From the following figure,
xo
find :
2
(i) y
(ii) sin xº
(iii) (sec x° - tan xº) (sec xº + tan xº)
Answers
Answered by
6
Answer:
Answer
Given that,
(i) y=?
(ii) sinx
2
=?
(iii) (secx
o
−tanx
o
)(secx
o
+tanx
o
)=?
According to given figure,
By Pythagoras theorem,
(Hypotenuse)
2
=(perpendicular)
2
+(Base)
2
2
2
=1
2
+y
2
4−1=y
2
(i) y=
3
(ii) sinx
o
=
Hypotenuse
perpendicular
sinx
o
=
2
y
sinx
o
=
2
3
(iii) (secx
o
−tanx
o
)(secx
o
+tanx
o
)
⇒sec
2
x
o
−tan
2
x
o
∴(A−B)(A+B)=A
2
=B
2
So, By part (ii)
sinx
o
=
2
3
sinx
o
=sin60
o
x
o
=60
o
put (iii)
sec
2
x
o
−tan
2
x
o
⇒sec
2
60
o
−tan
2
60
o
⇒(2)
2
−(
3
)
2
⇒4−3
⇒1
sec
2
x
o
−tan
2
x
o
=1
Hence, this is the answer.
Similar questions