Math, asked by mjena995, 3 months ago

1. From the following figure,
xo
find :
2
(i) y
(ii) sin xº
(iii) (sec x° - tan xº) (sec xº + tan xº)​

Answers

Answered by itskingrahul
6

Answer:

Answer

Given that,

(i) y=?

(ii) sinx

2

=?

(iii) (secx

o

−tanx

o

)(secx

o

+tanx

o

)=?

According to given figure,

By Pythagoras theorem,

(Hypotenuse)

2

=(perpendicular)

2

+(Base)

2

2

2

=1

2

+y

2

4−1=y

2

(i) y=

3

(ii) sinx

o

=

Hypotenuse

perpendicular

sinx

o

=

2

y

sinx

o

=

2

3

(iii) (secx

o

−tanx

o

)(secx

o

+tanx

o

)

⇒sec

2

x

o

−tan

2

x

o

∴(A−B)(A+B)=A

2

=B

2

So, By part (ii)

sinx

o

=

2

3

sinx

o

=sin60

o

x

o

=60

o

put (iii)

sec

2

x

o

−tan

2

x

o

⇒sec

2

60

o

−tan

2

60

o

⇒(2)

2

−(

3

)

2

⇒4−3

⇒1

sec

2

x

o

−tan

2

x

o

=1

Hence, this is the answer.

Similar questions