Math, asked by cheenugarg966, 9 months ago

1.Given ∫ 2^x dx = f(x) + C, then f(x) ​

Answers

Answered by madeducators1
2

Given:

 \int 2^xdx=f(x)+c

To Find:

f(x)?

Step-by-step explanation:

  • We have the equation

               \int 2^xdx=f(x)+c

  • with the help integeration formula we will solve this which is \int a^xdx=\frac{a^x}{log a} +C

                       where C is constant.

  • Now using this formula in given equation we get

                      \int \frac{2^x}{log2}+C =f(x)+C

Thus,f(x)= \frac{2^x}{log2}

Answered by pulakmath007
0

\displaystyle \sf  f(x)= \frac{2^x}{log2}

Given :

\displaystyle \sf  \int 2^xdx =  f(x) +C

To find :

The function f(x)

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf  \int 2^xdx =  f(x) +C \:  \:  \:  \:  -  -  -  - (1)

Step 2 of 2 :

Find the function f(x)

We are aware of the formula that

 \boxed{ \:  \: \displaystyle \sf \int a^xdx=\frac{a^x}{log a} +C \:  \: }

Taking a = 2 we get

\displaystyle \sf  \int 2^xdx=\frac{2^x}{log 2} +C

Comparing with the Equation 1 we get

\displaystyle \sf  f(x)= \frac{2^x}{log2}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

#SPJ2

Similar questions