1) Given that α , β are the roots of the equation x² - 3x + a = 0 and γ , δ are the roots of the equation x² - 12x + b= 0. If α , β , γ , δ form an increasing G. P., then the ordered pair (a, b) is equal to:
A) (3 , 12)
B) (12 , 3)
C) (2 , 32)
D) (4 , 16)
2) Find the sum of the series upto 30 terms :
1² + 2² - 3² + 4² + 5² - 6² + 7² + 8² - 9² + ....
A) 2425 B) 2525 C) 2524 D) 2562
Answers
EXPLANATION.
(1) = α, β are the roots of the equation.
⇒ x² - 3x + a = 0.
γ, δ are the roots of the equation.
⇒ x² - 12x + b = 0.
As we know that,
We can write equation as,
⇒ α = a.
⇒ β = ar.
⇒ γ = ar².
⇒ δ = ar³.
α, β are the roots of the equation.
⇒ x² - 3x + a = 0.
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = - b/a.
⇒ α + β = - (-3/1) = 3.
⇒ α + β = 3.
⇒ a + ar = 3.
⇒ a(1 + r) = 3. - - - - - (1).
Products of the zeroes of the quadratic polynomial.
⇒ αβ = c/a.
⇒ (a)(ar) = A. - - - - - (2).
γ, δ are the roots of the equation.
⇒ x² - 12x + b = 0.
As we know that,
Sum of the zeroes of the quadratic polynomial.
⇒ γ + δ = - b/a.
⇒ γ + δ = - (-12/1) = 12.
⇒ γ + δ = 12.
⇒ ar² + ar³ = 12.
⇒ ar²(1 + r) = 12. - - - - - (3).
Products of the zeroes of the quadratic polynomial.
⇒ γδ = c/a.
⇒ γδ = b.
⇒ (ar²)(ar³) = b. - - - - - (4).
From equation (1) and (3), we get.
Divide equation (1) and (3), we get.
⇒ a(1 + r) = 3. - - - - - (1).
⇒ ar²(1 + r) = 12. - - - - - (3).
We get.
⇒ r² = 4.
⇒ r = √4.
⇒ r = ± 2.
⇒ r = 2 [we included].
Put the value of r = 2 in the equation (1), we get.
⇒ a(1 + r) = 3.
⇒ a(1 + 2) = 3.
⇒ 3a = 3.
⇒ a = 1.
Put the values of a = 1 and r = 2 in the equation (2), we get.
⇒ (a)(ar) = A.
⇒ (1)(1 x 2) = A.
⇒ A = 2.
Put the values of a = 1 and r = 2 in the equation (2), we get.
⇒ (ar²)(ar³) = b.
⇒ [1 x (2)²] x [1 x (2)³] = b.
⇒ 4 x 8 = b.
⇒ b = 32.
Values of a = 2 and b = 32.
Ordered pair (a, b) = (2, 32).
Option [C] is correct answer.
(2) = 1² + 2² - 3² + 4² + 5² - 6² + 7² + 8² - 9² + . . . . .
As we know that,
We can write equation as,
⇒ (1² + 4² + 7² + . . . . . to 10 terms) + [(2² - 3³) + (5² - 6²) + (8² - 9²) + . . . . . to 20 term].
⇒ (1² + 4² + 7² + . . . . . to 10 terms) + [- 5 - 11 - 17 - . . . . . to 10 terms].
⇒ S₁ = (1² + 4² + 7² + . . . . . to 10 terms)
As we know that,
Formula of :
General term of an A.P.
⇒ Tₙ = a + (n - 1)d.
First term = a = 1.
Common difference = d = b - a = 4 - 1 = 3.
Using this formula in the equation, we get.
⇒ Tₙ = 1 + (n - 1)3.
⇒ Tₙ = 1 + 3n - 3.
⇒ Tₙ = 3n - 2.
⇒ Tₙ = (3n - 2)².
⇒ Tₙ = 9n² + 4 - 12n.
⇒ S₁ = 9 ∑n² - 12 ∑n + 4 ∑1.
As we know that,
Formula of :
⇒ ∑n² = [n(n + 1)(2n + 1)/6].
⇒ ∑n = [n(n + 1)/2].
⇒ ∑1 = n.
Using this formula in the equation, we get.
Put the value of n = 10 in the equation, we get.
⇒ S₁ = 9 x [n(n + 1)(2n + 1)/6] - 12 x [n(n + 1)/2] + 4 x n.
⇒ S₁ = 9 x [10(11)(21)/6] - 12(10(11)/2] + 4 x 10.
⇒ S₁ = 3465 - 660 + 40.
⇒ S₁ = 2845.
⇒ (1² + 4² + 7² + . . . . . to 10 terms) + [- 5 - 11 - 17 - . . . . . to 10 terms].
⇒ 2845 + [- 5 - 11 - 17 - . . . . . to 10 terms].
⇒ 2845 - [5 + 11 + 17 + . . . . . to 10 terms].
As we know that,
Formula of :
Sum of n terms of an A.P.
⇒ Sₙ = n/2[2a + (n - 1)d].
First term = a = 5.
Common difference = d = b - a = 11 - 5 = 6.
Put the values in the equation, we get.
⇒ S₁₀ = 10/2[2 x 5 + (10 - 1)6].
⇒ S₁₀ = 5[10 + 54].
⇒ S₁₀ = 5 x 64.
⇒ S₁₀ = 320.
⇒ (1² + 4² + 7² + . . . . . to 10 terms) + [- 5 - 11 - 17 - . . . . . to 10 terms].
⇒ 2845 - 320 = 2525.
Option [B] is correct answer.
By Vieta's formulas
Consider
The sum of two consecutive terms are
On dividing while the common ratio is positive
Furthermore
Since form an increasing G.P
Hence
The correct option is choice C.
Here we consider two sequences.
Then, is the required answer.
Factorization of is
The sum of the perfect squares.
Now we have
Thus
The correct option is choice B.