Math, asked by Anonymous, 8 hours ago

1) How many bricks each 25 cm long, 10 cm wide and 7.5 cm thick will be required for a wall 20 m long. 2 m high and 0.75 m thick? If bricks sell at Rs 900 per thousand, what will it cost to build the wall?

2) How many cubic metres of earth must be dug out to sink a well which is 16 m deep and which has a radius of 3.5 m? If the earth taken out is spread over a rectangular plot of dimensions 25 mx16 m. what is the height of the platform so formed?​

Answers

Answered by sarivuselvi
3

Step-by-step explanation:

hi friend!!

here you go refer the attachment

Attachments:
Answered by Anonymous
52

Question 1

Given :

  • Dimensions of brick are length 25 cm, Breadth 10 cm and width 7.5 cm. Dimensions of wall is 20 m, 2 m, 0.75 m.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find :

  • What is the total no. of bricks required and what is its cost.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution :

Formula Used :

\large{\orange{\bigstar}}\: \: \:{\underline{\boxed{\red{\sf{ Volume{\small_{(Cuboid) }}= Length \times Width \times Height}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Volume of brick :

{\implies{\qquad{\sf{ Volume{\small_{(Brick) }}= L \times W \times H}}}}

{\implies{\qquad{\sf{ Volume{\small_{(Brick) }}= 25 \times 10 \times 7.5}}}}

{\implies{\qquad{\sf{ Volume{\small_{(Brick) }}= 250 \times 7.5}}}}

\qquad{\large{\blue{\longrightarrow{\underline{\pink{\sf{ 1875 \: cm³}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Volume of Wall :

{\implies{\qquad{\sf{ Volume{\small_{(Wall) }}= L \times W \times H}}}}

{\implies{\qquad{\sf{ Volume{\small_{(Wall) }}= 2000 \times 200 \times 75}}}}

{\implies{\qquad{\sf{ Volume{\small_{(Wall) }}= 400000 \times 75}}}}

\qquad{\large{\blue{\longrightarrow{\underline{\pink{\sf{  30000000\: cm³}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

No. of bricks required :

{\implies{\qquad{\sf{ No. {\small_{(Bricks) }}= \dfrac{ Vol. \:of \:wall }{Vol. \: of\: bricks }}}}}

{\implies{\qquad{\sf{ No. {\small_{(Bricks) }}= \dfrac{ 30000000 }{1875}}}}}

{\implies{\qquad{\sf{ No. {\small_{(Bricks) }}= \cancel\dfrac{ 30000000 }{1875}}}}}

\qquad{\large{\blue{\longrightarrow{\underline{\pink{\sf{ 16000 \: bricks}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Cost of Bricks :

{:\longmapsto{\qquad{\sf{ Cost{\small_{(Bricks) }}= \dfrac{No. \:of \:bricks }{1000} \times 900}}}}

{:\longmapsto{\qquad{\sf{ Cost{\small_{(Bricks) }}= \dfrac{16\cancel{000} }{\cancel{1000}} \times 900}}}}

{:\longmapsto{\qquad{\sf{ Cost{\small_{(Bricks) }}= 16 \times 900}}}}

\qquad\large{\red{:\longmapsto{\underline{\boxed{\green{\sf{ ₹ \:14400 }}}}}}}{\pink{\bigstar}}

{\green{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}

Question 2

Given :

  • Dimensions of well are depth is 16 m and radius is 3.5 m.
  • Dimensions of the rectangular plot are 25 m * 16 m.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find :

  • What is the height of platform formed ?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution :

Formula Used :

\large{\orange{\bigstar}}\: \: \:{\underline{\boxed{\red{\sf{ Volume{\small_{(Cylinder) }}= πr²h}}}}}

Volume of earth taken from well :

{\implies{\qquad{\sf{ Volume{\small_{(Earth \:taken \:out) }}= πr²h}}}}

{\implies{\qquad{\sf{ Volume{\small_{(Earth \:taken \:out) }}= \dfrac{22}{7} \times (3.5)² \times 16 }}}}

{\implies{\qquad{\sf{ Volume{\small_{(Earth \:taken \:out) }}= \dfrac{22}{7} \times 12.25 \times 16 }}}}

{\implies{\qquad{\sf{ Volume{\small_{(Earth \:taken \:out) }}= \dfrac{22}{7} \times 196 }}}}

{\implies{\qquad{\sf{ Volume{\small_{(Earth \:taken \:out) }}= \dfrac{22}{\cancel7} \times \cancel{196} }}}}

{\implies{\qquad{\sf{ Volume{\small_{(Earth \:taken \:out) }}= {22} \times 28 }}}}

\qquad{\large{\blue{\longrightarrow{\underline{\pink{\sf{  616\: m³}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Height of platform :

{:\longmapsto{\sf{ Volume{\small_{(Platform) }}= Volume{\small_{(Well) }}}}}

{:\longmapsto{\qquad{\sf{ L \times B \times H = 616 \: m³ }}}}

{:\longmapsto{\qquad{\sf{ L \times B \times H = 616 \: m³ }}}}

{:\longmapsto{\qquad{\sf{ 25 \times 16 \times H = 616 \: m³ }}}}

{:\longmapsto{\qquad{\sf{ 352 \times H = 616 \: m³ }}}}

{:\longmapsto{\qquad{\sf{  H = \dfrac{616}{352}}}}}

{:\longmapsto{\qquad{\sf{  H = \cancel\dfrac{616}{352}}}}}

\qquad{\large{\red{:\longmapsto{\underline{\boxed{\green{\sf{ 1.75 \: m }}}}}}}}{\pink{\bigstar}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Therefore :

❝ Height of the rectangular platform is 1.75 m.

{\green{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}


mddilshad11ab: Awesome¶
Similar questions