Math, asked by Silentgirl916, 1 month ago

1)How to find area of an equilateral triangle where side is given as -- AB=5cm,BC=5cm,AC=5cm 2)How to find area of an isoscles triangle where side is given as -- PQ=4cm,QR=5cm,PR=4cm



Unnecessary answers will be reported

Answers

Answered by Athul4152
232

1.

Since it is an equilateral triangle

  \boxed{ area = \frac{√3a²}{4}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   \frac{ \sqrt{3}  \times 5 ^{2} }{4}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1.73×25}{4}  \\

  \:  \:  \:  \:  \:  \:  \:  \: = 10.83cm^{2}

2. base = 5 cm

height = √( 4² - 2.5 ²)

= 3.12 cm

area = 7.8cm²

more info attached into figure

Attachments:
Answered by user0888
218

Concepts

  • Congruence

Triangles that satisfy SSS, ASA, SAS criteria are congruent.

  • Pythagorean Theorem

It states that the hypotenuse c and the other sides a,b satisfy the relation of a^2+b^2=c^2.

  • Heron's Formula

A formula to find the area of a triangle in which three sides are given.

____________________

Solution A

If we draw a perpendicular line from the apex angle, it divides the isosceles triangle into two congruent pieces. This can be explained by congruence.

____________________

[Proof]

Consider an isosceles triangle \triangle ABC with \overline{AB}=\overline{AC}. We draw a perpendicular line \overline{AH} from the apex angle.

Criterion: SAS

  • \overline{AB}=\overline{AC}
  • \angle{B}=\angle{C}
  • The triangles share \overline{AH}.

Hence the criterion is satisfied and the two pieces are congruent.

We know that drawing a perpendicular line divides the triangles into two congruent pieces. Since the two pieces are right triangles, we can apply the Pythagorean theorem to find the height.

____________________

[Pythagorean Theorem]

\implies \overline{AH}^2=5^2-\dfrac{5^2}{2^2} =\dfrac{3\cdot 5^2}{2^2}

\implies \overline{AH}=\boxed{\dfrac{5\sqrt{3} }{2}\ \mathrm{cm}}

____________________

[Area of \triangle ABC ]

Area of a triangle \triangle ABC with \overline{AB}=5\ \mathrm{cm}, \overline{BC}=5\ \mathrm{cm}, \overline{CA}=5\ \mathrm{cm}.

\triangle ABC=\dfrac{1}{2} \times \overline{BC}\times \overline{AH}

=\dfrac{1}{2} \times 5\times \dfrac{5\sqrt{3} }{2}=\boxed{\dfrac{25\sqrt{3} }{4}\ \mathrm{cm^2}}

____________________

[Pythagorean Theorem]

\implies \overline{PH}^2=4^2-\dfrac{5^2}{2^2} =\dfrac{64-25}{2^2}=\boxed{\dfrac{39}{2^2} }

\implies \overline{PH}=\boxed{\dfrac{\sqrt{39} }{2}\ \mathrm{cm}}

____________________

[Area of \triangle PQR ]

Area of a triangle \triangle PQR with \overline{PQ}=4\ \mathrm{cm}, \overline{QR}=5\ \mathrm{cm}, \overline{RP}=4\ \mathrm{cm}.

\triangle PQR=\dfrac{1}{2} \times \overline{QR}\times \overline{PH}

=\dfrac{1}{2} \times 5\times \dfrac{\sqrt{39} }{2} =\boxed{\dfrac{5\sqrt{39} }{4}\ \mathrm{cm^2}}

____________________

Solution B

[Heron's Formula]

The area of a triangle with sides a,b,c is \sqrt{s(s-a)(s-b)(s-c)} where s=\dfrac{a+b+c}{2}.

____________________

[Area of \triangle ABC ]

Area of a triangle \triangle ABC with \overline{AB}=5\ \mathrm{cm}, \overline{BC}=5\ \mathrm{cm}, \overline{CA}=5\ \mathrm{cm}.

a=5, b=5, c=5, s=\dfrac{15}{2}

\implies \triangle ABC=\sqrt{\dfrac{15}{2} \times \dfrac{5}{2}  \times \dfrac{5}{2} \times \dfrac{5}{2}}

=\sqrt{\dfrac{3\cdot 5^4}{2^4} } =\boxed{\dfrac{25\sqrt{3} }{4}\ \mathrm{cm^2}}

____________________

[Area of \triangle PQR ]

Area of a triangle \triangle PQR with \overline{PQ}=4\ \mathrm{cm}, \overline{QR}=5\ \mathrm{cm}, \overline{RP}=4\ \mathrm{cm}.

a=4, b=5, c=4, s=\dfrac{13}{2}

\implies \triangle PQR=\sqrt{\dfrac{13}{2} \times \dfrac{5}{2}  \times \dfrac{3}{2} \times \dfrac{5}{2}}

=\sqrt{\dfrac{39\cdot 5^2}{2^4} } =\boxed{\dfrac{5\sqrt{39} }{4}\ \mathrm{cm^2}}

____________________

Conclusion

\triangle ABC=\boxed{\dfrac{25\sqrt{3} }{4}\ \mathrm{cm^2}}

\triangle PQR =\boxed{\dfrac{5\sqrt{39} }{4}\ \mathrm{cm^2}}


MystícPhoeníx: Perfect :D
Similar questions