Math, asked by singhharsh7708, 1 month ago

[(1+i)(1+1/i)]^7 Find the solution of given question

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\:\bigg[(1 + i)\bigg(1 + \dfrac{1}{i}\bigg)\bigg]^{7}

We know,

\red{\rm :\longmapsto\:i =  \sqrt{ - 1} }

\red{\rm :\longmapsto\: {i}^{2} =  - 1}

\red{\rm :\longmapsto\:i.i =  - 1}

\red{\rm :\longmapsto\:\dfrac{1}{i}  =  - i}

Now,

The given expression can be rewritten as

\rm \:  =  \:  \:  {\bigg[(1 + i)(1 - i)\bigg]}^{7}

We know

\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this identity, we get

\rm \:  =  \:  \: \bigg[1 -  {i}^{2}\bigg]^{7}

We know,

\boxed{ \bf{ \:  {i}^{2} =  -  \: 1}}

\rm \:  =  \:  \: \bigg[1 - ( - 1)\bigg]^{7}

\rm \:  =  \:  \: \bigg[1 + 1\bigg]^{7}

\rm \:  =  \:  \: \bigg[2\bigg]^{7}

\rm \:  =  \:  \: 128

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \underbrace{\boxed{ \bf{ \: \:\bigg[(1 + i)\bigg(1 + \dfrac{1}{i}\bigg)\bigg]^{7}  = 128}}}

Additional Information :-

Cube roots of unity

\red{\rm :\longmapsto\:1, \omega, {\omega}^{2}  \: are \: cube \: roots \: of \: unity \: such \: that}

\boxed{ \bf{ \: 1 + \omega +  {\omega}^{2} = 0}}

\boxed{ \bf{ \: 1 + \omega = -  \:   {\omega}^{2} }}

\boxed{ \bf{ \: 1 +  {\omega}^{2} =  -  \: \omega}}

\boxed{ \bf{ \: \omega +  {\omega}^{2}  =  -  \: 1}}

\boxed{ \bf{ \:  {\omega}^{3} = 1}}

\boxed{ \bf{ \: \omega \:  =  \: \dfrac{ - 1 \:  +  \:  \sqrt{3}  \: i}{2}}}

\boxed{ \bf{ \: \omega {}^{2}  \:  =  \: \dfrac{ - 1 \:   -   \:  \sqrt{3}  \: i}{2}}}

Similar questions