(1+I) (1+2i) (1+3i),,,,,,,(1+ni)=x2+y2, show that 2,5,10,,,,,(1+n2)=x2+y2
Answers
Answered by
4
Correct Question:
If (1 + i) (1 + 2i) (1 + 3i) ... (1 + ni) = x + yi, show that (2) (5) (10) ... (1 + n²) = x² + y²
_______________________________
Answer:
Given:
- (1 + i) (1 + 2i) (1 + 3i) ... (1 + ni) = x + yi
Solution:
(1 + i) (1 + 2i) (1 + 3i) ... (1 + ni) = x + yi ... (1)
It's conjugate pair can be given by
(1 - i) (1 - 2i) (1 - 3i) ... (1 - ni) = x - yi ... (2)
Multiply equation (1) and (2), we get
(1² - i²) (1² - 2²i²) (1² - 3²i²) ... (1 - n²i²) = x² - y²i²
[By using identity, (a + b) (a - b) = a² - b²]
Substitute i² = - 1, we get
=> (2) (5) (10) ... (1 + n²) = x² + y²
Hence, proved.
Similar questions
Biology,
3 months ago
Accountancy,
7 months ago
English,
7 months ago
Physics,
1 year ago
Math,
1 year ago