Math, asked by bj31, 3 months ago

(1+i) (1-i)-¹
express the following in the form of a+ib,a, beR i=√-1 ​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

z = (1 + i)(1 - i) ^{ - 1}

 \implies \: z =  \sqrt{2} ( \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} } i). \sqrt{2} ( \frac{1}{ \sqrt{2} }  -  \frac{1}{ \sqrt{2} } i)^{ - 1 }  \\

\implies \: z = 2( \cos( \frac{\pi}{4} )  +  \sin( \frac{\pi}{4} ) i)( \cos( -  \frac{\pi}{4} )  +  \sin( -  \frac{\pi}{4} ) )^{ - 1}  \\

\implies \: z = 2 .{e}^{ \frac{i\pi}{4} } . ({e}^{ \frac{ -i\pi}{4} } )^{ - 1}  \\

\implies \: z = 2.  {e}^{ \frac{i\pi}{4} }  . {e}^{ \frac{i\pi}{4} }  \\

\implies \: z = 2 {e}^{ \frac{i\pi}{2} }  \\

 \implies \: z = 2( \cos( \frac{\pi}{2} )  + i \sin( \frac{\pi}{2} ) )

\implies \: z = 2(0 + i)

\implies \: z = 2i

Similar questions