Math, asked by vijayghuge2002, 10 months ago

(1+i)(1-i)^-1express in form of a+in and state value of a and b​

Answers

Answered by Anonymous
3

Given Expression,

\huge{\sf{(1 + i)(1 - i) {}^{ - 1} }}

Now,

 \sf{(1 + i)(1 - i) {}^{ - 1} } \\  \\ \implies \:  \sf{ \frac{1 + i}{1 - i} } \\  \\  \sf{multiplying \: and \: dividing \: by \: conjugate} \\  \\  \implies \:  \sf{ \frac{1 + i}{1 - i} \times  \frac{1 + i}{1  +  i}  } \\  \\  \implies \:  \sf{ \frac{(1 + i) {}^{2} }{1 {}^{2} - ( i) {}^{2}  }} \\  \\  \implies \:  \sf{ \frac{1 + 2i + i {}^{2} }{1  -  i {}^{2} } } \\  \\  \sf{since \: i {}^{2}  =  - 1} \\  \\  \implies \:  \sf{ \frac{2i}{2} } \implies \:   \sf{i} \\  \\  \implies \:  \underline{ \boxed{ \sf{0 + i}}}

Here,

a=0 and b=1

Similar questions