Math, asked by KanishkgeniuS, 1 year ago

1/i + 1/i^2 + 1/i^3 + 1/i^4 :::express in the form of b or bi ,where b is a real number.​

Answers

Answered by ihrishi
1

Answer:

 \frac{1}{i}  +  \frac{1}{ {i}^{2} }  + \frac{1}{ {i}^{3} }   +  \frac{1}{ {i}^{4} }  \\  = \frac{1}{i}  +  \frac{1} { -1}  + \frac{1}{  {i}^{2}  \times i}   +  \frac{1}{ {i}^{2}  \times  {i}^{2} } \\  = \frac{1}{i}   - 1  + \frac{1}{  ( - 1)  \times i}   +  \frac{1}{  (- 1)  \times  ( - 1) } \\  =  \frac{1}{i}  - 1 -  \frac{1}{i}  + 1 = 0 + 0i \\  \: which \: is \: in \: the \: form \: of \: a + bi \\ a = 0 \: and \: b \:  = 0

i^2 = - 1


KanishkgeniuS: thanx
ihrishi: Mark me as brainliest
Similar questions