Math, asked by sharmameghana153, 11 months ago

1-i/1+I in polar form

Answers

Answered by Anonymous286
3
So -i is the final form
Now we know that
r=√x^2+y^2
x=0 (since no real part)
y=-1 (Coefficient of I)
hence r=√(-1)^2
r=1
Now theta =tan^-1(y/x)
=tan^-1(-1/0)
=tan^-1(negative infinity)
=-90°
Now polar form
=r(costheta +sintheta)
=1[cos(-90°)+isin(-90°)]
Hope it helps
:)
Attachments:
Answered by FlashMello613
1

z \:  =  \:  \frac{1 \:   -  \: i}{1 \:  +  \: i}
To Rationalize z, we multiple and divide z by (1 – i),
z \:  =  \:  \frac{(1 \:  -  \: i)}{(1 \:  +  \: i)}  \:  \times  \:  \frac{(1 \:  -  \: i)}{(1 \:  -  \: i)}
z \:  =  \:  \frac{{(1 \:  -  \: i) }^{2} }{(1 \:  +  \: i)(1 \:  -  \: i)}
z \:  =  \:  \frac{(1 \:  -  \: 1 \:  -  \: 2i)}{(1 \:  - ( - 1))}
z \:  =  \:  \frac{ - 2i}{2}
z \:  =    \:  - i
or,
z \:  =  \: 0 \:  +  \: ( - 1)i
a \:  =  \: 0 \:  \: and \:  \: b \:  =  \:  - 1
r \:  =  \:  |z|  \:  =  \:  \sqrt{ {a}^{2}  \:  +  \:  {b}^{2} }
r \:  =  \:  |z|  \:  =  \:  \sqrt{{(0) }^{2}  \:  +  \:  {( - 1)}^{2} }
r \:  =  \: 1
Since, a = 0, b < 0, Graph/Line on Negative Y - axis.
 \tan( \alpha )  \:  =  \:   | \frac{b}{a}  |
 \alpha  \:  =  \: { \tan }^{ - 1} (  | \frac { - 1}{0} | )

 \alpha  =  \:  {\tan}^{ - 1} ( \frac{1}{0} )
 \alpha  \:  =  \: {( \frac{ \pi}{2} )}^{ \: c}
Ø = a – π
Ø = (π/2 – π)
Ø = –π/2
P.F. => r(cosØ + isinØ)
P.F. => 1(cos(-π/2) + isin (-π/2)) = 1(e)^(Ø.i)

Similar questions