Math, asked by vaishnavinadar13611, 1 year ago

(1+i)(1-i) power is -1 state the value of a and b

Answers

Answered by Anonymous
11

Given Expression,

 \sf{(1 + i)(1 - i) {}^{ - 1} } \\  \\   \ \implies \:  \underline{\boxed{\sf{ \frac{1 + i}{1 - i} }}}

Now,

 \implies  \sf{\frac{1 + i}{1 - i} \:  \times  \:  \frac{1 + i}{1 + i} }  \\  \\  \implies \:  \sf{ \frac{(1 + i) {}^{2} }{(1 + i)(1 - i)} } \\  \\  \implies \:  \sf{ \frac{1 + i {}^{2} + 2i }{1 {}^{2} - i {}^{2}  } } \\  \\  \sf{since \: i \:  =  - 1} \\  \\  \implies \:  \sf{ \frac{2i}{2} } \:  \implies \:  \sf{i} \\  \\   \implies \: \huge{ \sf{0 + i}}

On comparing with z = a + bi,we get:

a = 0 and b = 1

Answered by Shubhendu8898
20

Answer: a = 0 , b = 1

Step-by-step explanation:

Given  complex  number,

(1+i)(1-i)^{-1}\\\;\\=\dfrac{1+i}{1-i}\\\;\\\text{Multiplying by (1+i) in denominator and numerator,}\\\;\\=\dfrac{(1+i)(1+i)}{(1-i)(1+i)}\\\;\\=\dfrac{(1+i)^2}{1^2-i^2}\\\;\\=\dfrac{1^2+i^2+2i}{1-(-1)}\\\;\\=\dfrac{1-1+2i}{1+1}\\\;\\=\dfrac{2i}{2}\\\;\\=i\\\;\\=0+i

Comparing this complex number with  standard form of complex number a+ib;

We have,

a = 0

b = 1

Note: 1) i  = √(-1)

         2) i² = -1

         3) i³ = -i

         4) i⁴ = 1  

Similar questions