Math, asked by savinjernia, 8 days ago

(1-i)^-1 simplify.... ​

Answers

Answered by diwanamrmznu
1

★solution•

 = (1 - i) {}^{ - 1}

we know that

  =  > a {}^{ - m}  =  \frac{1}{a {}^{m} } \\  \\  =  \frac{1}{(1 - i) {}^{1} }  \\  \\ =   \frac{1}{1 - i}     \\  \\ now \: muliplie  consider \: and \\  \: numrator \: (1 + i) \\  \\  =  \frac{1 + i}{(1 - i)(1 + i)} \\  \\

we know that

 =  > (a + b)(a - b) = a {}^{2}  - b {}^{2}

 =  \frac{1 + i}{1 {}^{2} -( i) {}^{2}  }  \\  \\ we \: know \: that \\ i  {}^{2}  =  - 1 \\  \\ put \: iota \: value

 =  \frac{1 + i}{1 - ( - 1)}  \\  \\  =  \frac{1 + i}{1 + 1}  \\  \\  =  \frac{1 + i}{2}  \\  \\  =  \frac{1}{2} +  \frac{1}{2} i  \\  \\

=================================

I hope it helps you

Similar questions