Math, asked by pratikshasakpal102, 6 months ago

(1+i)^10 , where i^2= -1 , is equals to-​

Answers

Answered by adhirajsinghbrar2005
1

We know that Iota (i) = \sqrt{-1}

We have to evaluate the value of (i + 1)^{10}

(i + 1)^{10} = (i + 1)^{2} * (i+1)^{2} * (i+1)^{2} * (i + 1)^{2} * (i + 1)^{2}\\

We know that :

(i + 1)^{2} = -1 + 1 + 2i = 2i

Replacing these values :

(i + 1)^{10} = (2i)^{5} = 32i^{5}

i = \sqrt{-1} Therefore i^{5} = i

Hence :

(i + 1)^{10} =32i^{5} = 32i

Answer : 32i (✿◠‿◠)

Similar questions