(1-i)²-(1+I)²/(1-i)³+(1+i)³
Answers
Answered by
5
Answer:
Step-by-step explanation:
How do I simplify the expression (1-i)³-(1+i)³/(1-i)²-(1+i)²?
(1-i)^3-(1+i)^3/(1-i)^2-(1+i)^2
=[(1-i)^5+(1+i)^3-(1-i^2)^2]/(1-2i+i^2)
=(1-5i+10i^2-10i^3+5i^4-i^5+1+3i+3i^2+i^3–4)/-2i
=(1-5i-10+10i+5-i+1+3i-3-i-4)/-2i
=(1-10+5+1-3-4-5i+10i-i-i+3i)/-2i
=(6i-10)/-2i
=(5/i)-3
=-(5i+3) otherwise if the function is like [(1-i)^3-(1+i)^3]/[(1-i)^2-(1+i)^2] then
=[(1-i-1-i)^3+3(1-i)(1+i)(1-i-1-i)]/[(1-i+1+i)(1-i-1-i)]
=[(-2i)^3+3(-2i)(1-i^2)]/2×(-2i)
=[8i+(-i)6×2]÷(-4i)
=[8i-12i]÷(-4i)
=-4i/-4i
=1
Similar questions