Math, asked by akhilmishra13, 11 months ago

(-1 + i √3)
Express the
in polar
complex Number
& Expontial form.​

Answers

Answered by adityajha52
1

Answer:

r=|z|=√-1^2+√3^2=√10

x=-1and y=√3

π-tan(y/x)

π-tan(√3/-1)

π-tan-√3{tan√3=60°=π/3}

π+π/3=4π/3

polar form =r(cosx+isinx)

r(cos4π/3+isin4π/3)...solve

Answered by Anonymous
4

\textbf{\underline{\underline{According\:to\:the\:Question}}}

Assumption

z = (-1 + i√3)

It is clear that (-1 + i√3) lies in 2 Quadrant

z = r(cosθ + isinθ)

Now,

rcosθ = -1

rsinθ = √3

Now here,

\textbf{\underline{Squarring\;both\;sides :-}}

r² = 4

r = √4

r = 2

Hence,

{\boxed{\sf\:{cos\theta=\dfrac{-1}{2}}}}

Also,

{\boxed{\sf\:{sin\theta=\dfrac{\sqrt{3}}{2}}}}

tanθ = -√3

tanα = |tanθ| = √3

{\boxed{\sf\:{\alpha=\dfrac{\pi}{3}}}}

Then,

\textbf{\underline{It\;lies\;in\;2\;Quadrant}}

Hence,

θ = (π - α)

{\boxed{\sf\:{\pi-\dfrac{\pi}{3}=\dfrac{2\pi}{3}}}}

Thus,

\Large{\boxed{\sf\:{z=2(cos\dfrac{2 \pi}{3}+isin\dfrac{2 \pi}{3}}}}

Similar questions