Math, asked by tiaasher03, 11 months ago

(1-i)^5 using de moivres theorem.​

Answers

Answered by rishu6845
16

Answer:

 - 4 + 4i

Step-by-step explanation:

To find ---->

value \: of \:  {( \: 1 \:  -  \: i \: )}^{5}  \: by \: using \: de \: moivers \: theorem

Concept used---->

1)

 \cos( -  \alpha )  \:  =  \cos( \alpha )  \\  \sin( -  \alpha ) \:  =  -  \sin( \alpha )

2)

 {( \: cos \alpha  + isin \alpha \: ) }^{n}  = cos \: n \alpha   + isin \: n \alpha

3)

 \cos(\pi +  \alpha ) \:  =  -  \: cos \alpha  \\  \sin(\pi +  \alpha ) \:  =  - sin \alpha

solution---->

 {( \: 1 \:  -  \: i \: )}^{5}

=( \sqrt{2} \:\: ( \dfrac{1}{ \sqrt{2} } -  \dfrac{1}{ \sqrt{2} }i \: ) \: ) ^{5}

 =  {( \:  \sqrt{2} \: ) }^{5}  \:  { ( \: \dfrac{1}{ \sqrt{2} \: } \:  -  \dfrac{1}{ \sqrt{2} }i ) }^{5}

 = 4 \sqrt{2}  \:  {( \: cos \dfrac{\pi}{4} \:  - i \: sin \dfrac{\pi}{4} \: )  }^{5}

 = 4 \sqrt{2}  \:  {( \: cos( -  \frac{\pi}{4}) \:  +  \: i \: sin( -  \frac{\pi}{4}) \: )  }^{5}

 = 4 \sqrt{2} \: ( \:  \cos( -  \dfrac{5\pi}{4}) \:  +  \: i \:  \sin( -  \dfrac{5\pi}{4} )   \: )

 = 4 \sqrt{2} \: ( \: cos \dfrac{5\pi}{4} \:  - i \: sin \dfrac{5\pi}{4} \: )

 = 4 \sqrt{2} \: ( \:  \cos(\pi \:  +  \dfrac{\pi}{4} )  \:  - i \:  \sin( \: \pi \:  +  \dfrac{\pi}{4} )  \: )

 = 4 \sqrt{2}  \: ( \:  -  \cos( \dfrac{\pi}{4} ) \:  +  \: i \:  \sin( \dfrac{\pi}{4} ) \: )

 = 4 \sqrt{2}  \: ( \:  -  \dfrac{1}{ \sqrt{2} } \:  +  \: i \:  \dfrac{1}{ \sqrt{2} } \: )

 =  -  \dfrac{4 \sqrt{2} }{ \sqrt{2} } \:  +  \: i \:  \dfrac{4 \sqrt{2} }{ \sqrt{2} }

 =  \:  - 4 \:  +  \: 4i

Answered by Anonymous
1

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions