Math, asked by indorisstore, 7 months ago

1 + i + i2 + i3 is equal to​

Answers

Answered by tejavaththavur41
3

Step-by-step explanation:

1+3i+3i

1+6i

hope it helps you

Mark as brainliest

Answered by payalchatterje
0

Answer:

1 + i +  {i}^{2}  +  {i}^{3} is equal to 0.

Step-by-step explanation:

Given,

1 + i +  {i}^{2}  +  {i}^{3}

We want to find value of the given term.

We know,

 {i}^{2}  =  - 1

So,

1 + i +  {i}^{2}  +  {i}^{3}  \\  = 1 + i +  {i}^{2}  + i \times  {i}^{2}  \\  = 1 + i + ( - 1) + i \times ( - 1) \\  = 1 + i - 1 - i \\  = 0

This is a problem of Complex number of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Complex number:

https://brainly.in/question/12233847

https://brainly.in/question/23823208

#SPJ1

Similar questions