Math, asked by okshirsagar1233, 6 months ago

1) If 2 sinA = 1 = V2 cosB and <A < TI,

< B < 21, then find the value of
X
2
tan A+tan B
cos A-cos B​

Answers

Answered by geetanjali32446
1

Answer:

please mark me as brainlist

Answered by ksujannihaal
2

Step-by-step explanation:

Answer:

Given

2sinA = 1

⇒ sinA = 1/2 = sin30°

⇒ A = 30°

Also, √2 cosB = 1

⇒ cosB = 1/√2 = cos45°

⇒ B = 45°

Therefore

\frac{\tan A+\tan B}{\cos A-\cos B}

cosA−cosB

tanA+tanB

=\frac{\tan 30^\circ+\tan 45^\circ}{\cos 30^\circ-\cos 45^\circ}=

cos30

−cos45

tan30

+tan45

=\frac{(1/\sqrt{3}) +1}{(\sqrt{3}/2)-(1/\sqrt{2})}=

(

3

/2)−(1/

2

)

(1/

3

)+1

=\frac{\sqrt{3}+1}{\sqrt{3}} \times \frac{2}{\sqrt{3}-\sqrt{2}}=

3

3

+1

×

3

2

2

=\frac{\sqrt{3}+3}{3} \times \frac{2(\sqrt{3}+\sqrt{2})}{3-2}=

3

3

+3

×

3−2

2(

3

+

2

)

=\frac{2}{3}\times (\sqrt{3}+\sqrt{2})(\sqrt{3}+3})

=\frac{2}{3}(\sqrt{3}+\sqrt{2})(\sqrt{3}+3})

Similar questions