1. If 2log 4 + 2log 3 - 2log 12 = log x ,then x
Answers
Answer:
hiii good evening..
Step-by-step explanation:
please mark as brainlist
Answer:
3log2-2log3=1+log(1/x)
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)log 2^3 - log 3^2 = log 10 + log (1/x)
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)log 2^3 - log 3^2 = log 10 + log (1/x)log 8 - log 9 = log 10 + log (1/x)
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)log 2^3 - log 3^2 = log 10 + log (1/x)log 8 - log 9 = log 10 + log (1/x)log (8/9) = log (10/x)
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)log 2^3 - log 3^2 = log 10 + log (1/x)log 8 - log 9 = log 10 + log (1/x)log (8/9) = log (10/x)8/9 = 10/x
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)log 2^3 - log 3^2 = log 10 + log (1/x)log 8 - log 9 = log 10 + log (1/x)log (8/9) = log (10/x)8/9 = 10/xx = 90/8
3log2-2log3=1+log(1/x)log 2^3 - log 3^2 = 1 + log (1/x)log 2^3 - log 3^2 = log 10 + log (1/x)log 8 - log 9 = log 10 + log (1/x)log (8/9) = log (10/x)8/9 = 10/xx = 90/8x = 11.25
Step-by-step explanation: