Math, asked by avishishukla, 1 month ago

1. If √3 - 1/√3+1 = x + y √3, find the values of x and y.​

Answers

Answered by Anonymous
26

Answer:

  • The value of x and y is 2 and -1 respectively.

Step-by-step explanation:

Given,

  •   \tt\frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  = x + y \sqrt{3}  \\

To Find,

  • The value of x and y.

Solution,

 :\implies \tt\frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  = x + y \sqrt{3}  \\   \\ :\implies \tt  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times \frac{ \sqrt{3}  - 1}{ \sqrt{3}   -  1} = x + y \sqrt{3}  \\  \\  :\implies \tt  \frac{ {( \sqrt{3}  - 1)}^{2} }{ {( \sqrt{3}) }^{2} -  {(1)}^{2}  }  = x + y \sqrt{3}  \\  \\  :\implies \tt  \frac{{( \sqrt{3 } )}^{2}  - 2(1)( \sqrt{3}) +  {1}^{2}  }{3 - 1}  = x + y \sqrt{3}  \\  \\  :\implies \tt  \frac{3 - 2 \sqrt{3} + 1 }{2}  = x + y \sqrt{3}  \\  \\  :\implies \tt  \frac{4 - 2 \sqrt{3} }{2}  = x + y \sqrt{3}  \\  \\  :\implies \tt  \frac{2(2 -  \sqrt{3}) }{2}  = x + y \sqrt{3}  \\  \\  :\implies \tt 2 -  \sqrt{3}  = x + y \sqrt{3}  \\  \\  :\implies  \color{red} \boxed{x  = 2} \:  \:  \:  \:  and \:  \:  \:  \boxed{y =  - 1}

Required Answer,

  • The value of x and y is 2 and -1 respectively.
Similar questions