1.) If 4x2 + y2 + 9z2 - 2xy - 3yz - 6zx = 0, then prove that 2x = y = 3z.
Evaluate :
2.) 7/2² - 623 +7(62_c23 +7(02-223
(a - b) + (6 - C)® +(c-a)
3.) If V2x + V3y = 15. prove that
212x3 +3/3y3 - 5/5 + 330xy = 0
Please solve fast I'm in hurry!!
Answers
Answered by
59
Answer:
2x = y = 3z
Step-by-step explanation:
If 4x2 + y2 + 9z2 - 2xy - 3yz - 6zx = 0, then prove that 2x = y = 3z.
4x² + y² + 9z² - 2xy - 3yz - 6zx = 0
Multiply by 2
=> 8x² + 2y² + 18z² - 4xy - 6yz - 12zx = 0
=> 4x² + 4x² + y² + y² + + 9z² + 9z² + - 4xy - 6yz - 12zx = 0
=> 4x²+ y² - 4xy + 4x² + 9z² - 12xz + y² + 9z² - 6yz = 0
=> (2x - y)² + (2x -3z)² + (y - 3z)² = 0
Square can not be - ve
& sum = 0
=> (2x - y)² = 0 => 2x = y
(2x -3z)² = 0 => 2x = 3z
(y - 3z)² = 0 => y = 3z
Hence 2x = y = 3z.
Answered by
14
Step-by-step explanation:
2x=y=3z
hence proved
I hope it will help you
Attachments:
Similar questions