1. If a and ß are the zeroes of the polynomial
ax²+bx+c. find the value of a2
+ B²
Answers
Answer:
Explanation:
Given :
- Quadratic polynomial, ax² + bx + c.
To Find :
- The value of α² + β².
Solution :
Given, quadratic polynomial, ax² + bx + c.
On comparing with, ax² + bx + c, We get ;
=> a = a , b = b, c = c
• Sum of zeroes = -b/a
=> α + β = -b/a
=> α + β = -b/a
• Product of zeroes = -c/a
=> αβ = c/a
=> αβ = c/a
Now,
α² + β² = (α + β)² + 2αβ
=> α² + β² = (-b/a)² + 2(c/a)
=> α² + β² = b²/a² + 2 × c/a
=> α² + β² = b²/a² + 2c/a
=> α² + β² = b² + 2ac/a²
Hence :
The value of α² + β² is b² + 2ac/a².
Explanation:
Given :
- Quadratic polynomial, ax² + bx + c.
To Find :
- The value of α² + β².
Solution :
Given, quadratic polynomial, ax² + bx + c.
On comparing with, ax² + bx + c, We get ;
=> a = a , b = b, c = c
• Sum of zeroes = -b/a
=> α + β = -b/a
=> α + β = -b/a
• Product of zeroes = -c/a
=> αβ = c/a
=> αβ = c/a
Now,
α² + β² = (α + β)² + 2αβ
=> α² + β² = (-b/a)² + 2(c/a)
=> α² + β² = b²/a² + 2 × c/a
=> α² + β² = b²/a² + 2c/a
=> α² + β² = b² + 2ac/a²
Hence :
The value of α² + β² is b² + 2ac/a².