1. If A and B are any two sets then prove that :
(i) (AUB)’=A’∩B’ (ii) (A∩B)’=A’UB’
Answers
Proofs
1)
To prove
(A∪B)' =A'∩B'
let
x ∈ (A∪B)'
⇒ x ∉ (A∪B)
⇒ x ∉ A and x ∉ B
⇒ x ∈ A' and x ∈ B'
⇒ x ∈ A'∩B'
⇒ (A∪B)' ⊂ A'∩B' ......(1)
Now
Let
y ∈ A'∩B'
⇒ y ∈ A' and y ∈ B'
⇒ y ∉ A and y ∉ B
⇒ y ∉ (A∪B)
⇒ y ∈ (A∪B)'
⇒ A'∩B' ⊂ (A∪B)' ........(2)
From (1) and (2)
(A∪B)' = A'∩B'
Hence prove
2)
To prove
(A∩B)' = A'∪B'
let
x ∉ (A∩B)'
⇒ x ∈ (A∩B)
⇒ x ∈ A and x ∈ B
⇒ x ∉ A' and x ∉ B'
⇒ x ∉ A'∪B' .......(1)
It show the element which not present in (A∩B)' also not present in A'∪B'
Now
Let
y ∉ A'∪B'
⇒ y ∉ A' and y ∉ B'
⇒ y ∈ A and y ∈ B
⇒ y ∈ (A∪B)
⇒ y ∉ (A∪B)' ......(2)
It show the element which not present in A'∪B' also not present in (A∩B)'
Thus from (1) and (2) it clear only those element present in A'∪B' which is also present (A∩B)' and vise versa
Thus
(A∩B)' = A'∪B'
Hence prove.
Answer:
HOPE THIS HELPS U
Step-by-step explanation:
1)To prove
(A∪B)' =A'∩B'
let
x ∈ (A∪B)'
⇒ x ∉ (A∪B)
⇒ x ∉ A and x ∉ B
⇒ x ∈ A' and x ∈ B'
⇒ x ∈ A'∩B'
⇒ (A∪B)' ⊂ A'∩B' ......(1)
Now
Let
y ∈ A'∩B'
⇒ y ∈ A' and y ∈ B'
⇒ y ∉ A and y ∉ B
⇒ y ∉ (A∪B)
⇒ y ∈ (A∪B)'
⇒ A'∩B' ⊂ (A∪B)' ........(2)
From (1) and (2)
(A∪B)' = A'∩B'
Hence prove
2)To prove
(A∩B)' = A'∪B'
let
x ∉ (A∩B)'
⇒ x ∈ (A∩B)
⇒ x ∈ A and x ∈ B
⇒ x ∉ A' and x ∉ B'
⇒ x ∉ A'∪B' .......(1)
it show the element which not present in (A∩B)' also not present in A'∪B'
Now
Let
y ∉ A'∪B'
⇒ y ∉ A' and y ∉ B'
⇒ y ∈ A and y ∈ B
⇒ y ∈ (A∪B)
⇒ y ∉ (A∪B)' ......(2)
It show the element which not present in A'∪B' also not present in (A∩B)'
Thus from (1) and (2) it clear only those element present in A'∪B' which is also present (A∩B)' and vise versa
Thus
(A∩B)' = A'∪B'
Hence proved.........