1. If a + b = 15 and a - b = 13. then the value of a square + b square is
Answers
Answer:
Step-by-step explanation:
Hey there !
Given :
a + b = 8
ab = 15
To find :
a⁴ + a²b² + b⁴
Proof:
ab = 15
=> b = 15 / a ( Equation 1 )
Substituting this in a + b = 8 we get,
=> a + 15 / a = 8
=> a² + 15 / a = 8
=> a² + 15 = 8a
=> a² - 8a + 15 = 0
Solving for ' a ' we get,
=> a² - 5a - 3a + 15 = 0
=> a ( a - 5 ) - 3 ( a - 5 ) = 0
=> ( a - 3 ) ( a - 5 ) = 0
=> a = 3 , 5
So b = 15 / a
=> b = 15 / 5 if a = 5
=> b = 3 if a = 5
If a = 5 then b = 15 / 5 = 3
So a and b have both interchangeable values of 3 and 5.
So If we consider a = 3 and b = 5 we get,
=> 3⁴ + 3² . 5² + 5⁴
=> 81 + 9 . 25 + 625
=> 81 + 225 + 625
=> 931
If we take a = 5 and b = 3 we get
=> 5⁴ + 5² . 3² + 3⁴
=> 625 + 25 . 9 + 81
=> 625 + 225 + 81
=> 931
Hence in both cases we get 931.
Hence a⁴ + a². b² + b⁴ = 931, where a and b = 5 and 3.
Step-by-step explanation:
okk yess right hai na y wrong hai